

COMUNICAÇÃO TÉCNICA

Nº 176956

Thermochemical conversion of sugarcane bagasse and catalyticupgrading of fast pysolysis bio-oil as a potential conversion route sugarcane refineries

Caroline Carriel Schmitt Renata Moreira Renato Cruz Neves Danirel Richter Axel Funke Klauss Raffelt Jan-Dierk Grunwaldt Nicolus Danhmen

Palestra apresentado INTERNATIONAL BIOECONOMY CONGRESS BADEN-WÜRTTEMBERG, on line, 3., 2020, Stuttgart A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública.

> Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Thermochemical conversion of sugarcane bagasse and catalytic upgrading of fast pyrolysis bio-oil as a potential conversion route in sugarcane refineries

Carriel Schmitt, Caroline¹; Moreira, Renata²; Cruz Neves, Renato³; Richter, Daniel¹; Funke, Axel¹; Raffelt, Klaus¹; Grunwaldt, Jan-Dierk^{1,4}; Dahmen, Nicolaus¹

¹Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany ²Fuels and Lubricants Laboratory, Instituto de Pesquisas Tecnológicas, São Paulo, Brazil 3 Brazilian Bioethanol Science and Technology Laboratory, Campinas, Brazil

Sugarcane in Brazil

Brazil biggest producer worldwide

635.3 million tons sugarcane 2018/2019

000

448 million tons sugarcane bagasse 2018/2019 ✓ Bioelectricity generation;
✓ 2G ethanol production;

FAST PYROLYSIS 500 °C Up to 5 s N₂

ADVANTAGES THERMOCHEMICAL ROUTE:

- Sugarcane bagasse already centrally collected;
- ↑ [lignin] = 17-32 wt.%: interesting for thermochemical conversion: functionalized aromatic compounds;
- Expantion of the range of chemicals obtained in sugarcane refinery

Integration 2G thermochemical conversion routes for sugarcane biorefinery

AIM OF THE STUDY

The aim of this study is to present for the first time a comprehensive investigation from sugarcane bagasse characterization, fast pyrolysis and hydrotreatment to the final upgraded products.

This approach allows identification of the feedstock specific characteristics, advantages, and disadvantages of the whole process chain.

MATERIALS and **METHODOLOGY**

Sugarcane bagasse collection, preparation and characterization

Thermochemical conversion: Fast Pyrolysis

Thermocatalytic treatment of fast pyrolysis bio-oil: Hydrotreatment with two Ni-based catalysts

• Low pH value;

- High [H₂O];
- High [O];

50 mL FPBO, 2.5 g catalyst Catalyts: Ni/SiO₂ and Ni/Cr₂O₃-SiO₂ 2 h, 325 °C, 90 bar of H₂ autoclave of 300 mL

Gas fraction Upgraded oil + upgraded light phase

Spent catalyst + solid residue

Hydrotreatment products: Characterization

Results: Sugarcane bagasse characterization

	SCB*
Residual moisture (wt. %)	2.80
HHV (MJ/kg)	18.51
Proximate analysis	
Ash (wt.%)	6.75
Volatile matter (wt.%)	80.32
Fixed carbon (wt.%)	10.14

↑ ash content!
↓ potassium content! (0.08 wt.%)!

Results: Fast pyrolysis of sugarcane bagasse

Fast Pyrolysis products distribution (wt.%)

■ Solids ■ Organic condensate (FBPO) ■ Aqueous condensate ■ Gas ■ Loss

 \downarrow potassium content (catalytic effect) \uparrow FPBO yield!

Physicochemical properties and				
elemental analysis FPBO (dry basis)				
Solid (wt.%)	0.8			
pH value	2.9			
H ₂ O (wt.%)	20.9			
Density (g/cm ³)	1.18			
HHV (MJ/kg)	23.79			
Carbon (wt.%)	56.89			
Hydrogen (wt.%)	6.55			
Oxygen (wt.%) ^{* *}	36.56			
Nitrogen (wt.%)	<0.2			

Results: Hydrotreatment of fast pyrolysis bio-oil

	FPBO	UOP _{Ni/SiO2}	IUP _{Ni-Cr/SiO2}	UOP _{Ni-Cr/SiO2}
H ₂ O (wt.%)	20.9	8.3	8.8	8.6
pH value	2.9	-	3.8	-
HHV (MJ/kg)	23.79	31.89	31.73	30.42
Carbon (wt.%)	56.89	71.1	68.31	66.63
Hydrogen (wt.%)	6.55	7.83	8.69	8.25
Oxygen (wt.%)**	36.56	20.74	22.67	24.79
Nitrogen (wt.%)	<0.2	0.33	0.33	0.33
DOD (%)*	-	43.3	38.0	32.2

*DOD: degree of deoxygenation

Results: Hydrotreatment of fast pyrolysis bio-oil

Results: Hydrotreatment Fast pyrolysis bio-oil

- Internal Temperature Autoclave Ni-Cr/SiO2

- Internal Temperature Autoclave Ni/SiO2
- Pressure Ni-Cr/SiO2
- Pressure Ni/SiO2

000.

- Autoclave theoretical pressure ideal gas equation
- Autoclave theoretical pressure soave redlich kwong equation

剧

-000

Results: Catalyst characterization

	Ni/SiO ₂	Ni/Cr ₂ O ₃ -SiO ₂
Carbon (wt.%)	0.36	18.5
Leached metal to ULP (wt.%)	Ni: 0.73	Ni: 0.054 Cr: <0.09

Crystalitte size Ni/SiO₂:17.7 nm before and after reaction; Ni/Cr₂O₃-SiO₂: 4.4 nm (before) to 38.2 nm after reaction \rightarrow sintering

Conclusions

A comprehensive study from sugarcane bagasse characterization to upgraded products after treatment was presented.

- Low moisture and low K content in the sugarcane bagasse were reflected in the high yield of FBPO OUTSIDE the range expected for residual biomass;
- Hydrotreatment with both catalysts resulted in upgraded oils with around 30% less O and approx. 43% less water in comparison to the FPBO;
- Ni/Cr₂O₃-SiO₂ showed higher hydrogenation activitiy whereas Ni/SiO₂ showed higher hydrodeoxygenation activity;
- Sugarcane bagasse proved to be an attractive feedstock for 2G biorefineries with overall yield of 30.5 wt.%;
- Further studies will target higher FPBO yields (fast pyrolysis) and upgraded oils with lower oxygen content. 000.

Thank you!

