

COMUNICAÇÃO TÉCNICA

Nº 175662

Challenges in the control of metallic didymium production towards reducing greenhouse gas emissions

João Batista Ferreira Neto Andre Luis Nunis da Silva Celia Aparecida Lino dos Santos João Ricardo Filipini da Silveira Maciel Santos Luz Fernando José Gomes Landgraf

> Palestra apresentada no JAPAN-BRAZIL SYMPOSIUM ON DUST PROCESSING-ENERGY-ENVIRONMENT IN METALLURGICAL INDUSTRIES, 10., 2018, Sendai, Japão. **Palestra...** 16slides

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública.

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Challenges in the control of metallic didymium production towards reducing greenhouse gas emissions

- J. B. Ferreira Neto¹, A. L. N Silva¹, C. A. L. Santos¹, J. R. F. Silveira¹, M. S. Luz¹ and F. J. G. Landgraf¹
- ¹ Institute for Technology Research of Sao Paulo State IPT, Brazil

OUTLINE

- RE Initiatives in Brazil

- Electrolytic reduction of Neodymium/Didymium oxide
 - PFC gas emissions during Nd/Pr reduction
 - Controlling of PFC gas emissions
 - Conclusions

China is responsible for almost 90% of the world's REE production

World Reserves of RE

	Mine production ^e		R eserves ⁵
	2014	<u>2015</u>	
United States	5,400	4,100	_1,800,000
Australia	8,000	10,000	<u>°3,200,000</u>
Brazil	—	_	22,000,000
China	105,000	105,000	55,000,000
India	NA [®]	NA [®]	3,100,000
Malaysia	240	200	30,000
Russia	2,500	2,500	(⁹)
Thailand ¹⁰	2,100	2,000	NÁ
Other countries	NA	NA	41,000,000
World total (rounded)	123,000	124,000	130,000,000

Fonte: U.S. Geological Survey, Mineral Commodity Summaries, January 2016

RE Oxide basis

Most important RE ore deposits in Brazil

Fonte: MCTI, apresentação no CT-Mineral (2010).

16

6

4

5

4

100

Magnetite

Gorceixite

Monazite

Ilmenite

Quartz

Others

Total

CBMM invested ~US\$ 20 million:

- Concentration plant (3.000 t/y)
- Solvent Extraction Plant (~3 t/y)
 - Lanthanum Oxide
 - Cerium Oxide
 - Heavy RE oxides
 - Didymium Oxide (Nd, Pr)

- Electrolyte: Fluoride molten salt:
 - low melting temperature (close to the Nd melting point: 1024°C);

1020°C

- high thermodynamic stability;
- high ionic conductivity
- low viscosity
- low vapour pressure

0.2

1300

1100

500

300

87%NdF3/13%LiF

0.4

0.6

LiF/(LiF+NdF,) (g/g)

Gactiage

0.8

- Electrolyte: Fluoride molten salt:
 - NdF₃ increases the Nd₂O₃ solubility in LiF
 - Limited solubility: max ~4% Nd₂O₃ in 13%LiF-87%NdF₃
 - Х
 - ~8% AI_2O_3 in fluoride molten salt (Hall Heroult)

Narrower operational window

Chinese industrial cells (3 kA):

- Cell Voltage: 9 -11 V
- Current efficiency: 65 78%
- Anode current density: 1 1,25 A/cm²
- Cathode current density: 5,5 6,5 A/cm²
 - Power consumption: 11 13 kWh/kg Nd
 - Nd yield: 95%
 - Nd production: 1,7 2,3 t/month

 $Nd_2O_3 + 3 C = 2 Nd + 3 CO$ $Nd_2O_3 + 1.5 C = 2 Nd + 1.5 CO_2$

Anodic: 3 $[NdOF_5]^{4-}$ - 6e⁻ = 3/2 O₂ + 3 Nd³⁺ + 15 F⁻ Cathodic: 2 $[NdF_6]^{3-}$ + 6 e⁻ = 2 Nd + 12 F⁻

Oxide Feeding

ιpť

Electrolysis

Experimental conditions:

- 14 -19 kg LiF-REF₃ (RE=Pr, Nd)
- T = 1020 1050 ° C
- Didymium oxide: 400-900 g

- Current density:
 - Anode: 0,3-0,5 A/cm²
 - Cathode: 4-6 A/cm²

Feeding rate control = Electrolytic process control

Didymium

- Gas generated: 0.18 to 0.3 kg of CO₂ (COeq + CO₂)/kg of Didymium
- CO/CO_2 ratio = 3-4
- Current Efficiency up to 70 %

Electrolysis

Typical chemical composition of Didymium produced by electrolytic reduction in molten salt determined by ICP-MS

Elemente	LiF - REF3	
Elements	(% w)	
AI	<0.001	
Mg	<0.001	
Са	<0.001	
Si	<0.05	
Pr	25-40	
Nd	60-75	
0	0.002	
С	0.05	
REE	<0.1	

a A + b B = c C + d D $E = E^{\circ} - RT/nF \ln [(aC^{c} * aD^{d})/(aA^{a} * aB^{b})]$ $E^{\circ} = -\Delta G^{\circ} / nF$

 $COF_x + C$ (anode) = $CF_4 + CO$

E (V) of a specific product at the anode does not only depend on the temperature, but also the anode current density and the activity of dissolved species in the molten salt at the interface with the anode.
The process can move easily from oxide reduction to fluoride oxidation.

A few papers have discussed PFC gas emissions

Keller at al (1998):

Cells: 20 – 100 A

- Observe CF₄ as high as 20% of off-gas without full anode effect (CD: 0,1 0,2 A/cm²) (voltage, oxide content not reported)
- Operate a 100 A cell without any CF₄ detection with CD: 0,03 A/cm²

CD: too low to keep T of electrolyte in an industrial cell (~0,5 A/cm²)

Vogel et alii (2015-2017):

- Partial anode effect

- Up to 7% of CF_4 and 0,7% C_2F_6 in the offgas only during full anode effect

PFC gas emissions during Nd,Pr electrowinning Vogel et alii (2015-2017):

Nd₂O₃ dissolved X Critical current densities (CCD) which causes partial anode effect

Fig. 8 Linear voltammograms for increasing oxide feeding amounts at 50 mV versus Pt-wire at 1050 °C in 85 % NdF3-15 % LiF (510.5 g)

CCD and V with dissolved
$$Nd_2O_3$$

Electrolysis: CD < CCD can prevent PFC

Vogel et alii (2015-2017): Distinct CF₄ levels not directly related with anode effect

Figure 7. Galvanostatic neodymium electrolysis with slowly evolving CF_4 emission without voltage disturbances.

Nd₂O₃: from 2 to 0,052% CD: 0,08 A/cm² CF_4 : up to ~10% off-gas without any anode effect

Figure 14. Automatic feeding of 1% neodymium oxide after 1 minute in full anode effect.

Nd₂O₃: < 1% CD: 0,4 A/cm² CF₄: ~0,2% off-gas only during a full anodic effect

Figure 16. Galvanostatic electrolysis at 50 A without feeding and strong PFC emission.

Based on the emission 7% of CF_4 and 0,7% C_2F_6 (observed during the full anode effect) <u>extrapolated for the</u> <u>entire operation</u>:

74 g CF_4 /kg Nd + 12 g C_2F_6 /kg Nd: CO_2eq : 700 kg/kg Nd (X 30.000 t Nd/y ~ 20 M t CO_2eq /y)

0,43 kg CO₂eq/kg AI (X 60 M tAI/y ~26 M tCO2 eq/y) ¹Pt

Zhang et al (2017): First time PFC determined in an industrial Chinese plant

1 cell: 9,5 g CF_4/t Nd (15 h operation): 0,07 kg CO_2 eq/kg Nd

16 cells: 26,9 g CF_4 /t Nd (75 h operation): 0,2 kg CO_2 eq/kg Nd

X CO₂eq: 700 kg/kg Nd (Vogel et al) X 0,43 kg CO₂eq/kg Al

ιpť

Fig. 2. CF₄ concentration of neodymium metal during regular production.

- Preliminary analyses (chromatography) at IPT cell:
 - during normal operation (without anodic effect) (0,5 A/cm²): CF₄
 Not Detected (detection limit: 0,1%)
 - during full anodic effect (0,5 A/cm²): ~ 0.5 % CF₄ (diluted in the electrolytic chamber)

0,7 kg CO₂eq/kg Nd (IPT – preliminary result) X 0,2 kg CO₂eq/kg Nd (Zhang et al – industrial cell) X 700 kgCO₂eq/kg Nd (Vogel et al) X 0,43 kg CO₂eq/kg Al

Anode current density (A/cm²)

Conclusions

- Metallic didymium (>99%) was produced in a laboratory electrochemical cell.
- The electrochemical process is stable if the oxide concentration in molten salt is properly controlled, by controlling the oxide feeding rate and the electric parameters of electrolytic process (voltage and current).
- There is a great discrepancy in the literature concerning the specific quantity of PFC gases emitted per t of Nd/Pr during the electrolysis of neodymium/didymium oxide.
- It is proposed an operational procedure to determine an operation window which might guarantee high productivity with low greenhouse gas emissions

The authors acknowledge the financial support from Companhia Brasileira de Metalurgia e Mineração - CBMM and Empresa Brasileira de Pesquisa e Inovação Industrial -Embrapii

jbfn@ipt.br <u>www.ipt.br</u>