

COMUNICAÇÃO TÉCNICA

Nº 177499

Segurança estrutural de barragens

Wilson Shoji Iyomasa

Palestra on-line apresentada na WEBNAR: PREVENÇÃO DE DESASTRES E ASPECTOS TÉCNICOS E JURÍDICOS EM SEGURANÇA DE BARRAGENS DE INTERESSE DA ATUAÇÃO DO MP, 08 de ago., 2021, São Paulo. [on-line] 35 slides

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública.

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Secretaria de Desenvolvimento Boanâmico

Seu desafio é nosso

Prevenção de desastres e aspectos técnicos e jurídicos em segurança de barragens de interesse da atuação do MP

SEGURANÇA ESTRUTURAL DE BARRAGENS

Wilson Iyomasa

IPT- Cidades, Infraestrutura e Meio Ambiente – CIMA

Setembro/2021

SUMÁRIO

PRINCIPAIS TIPOS DE BARRAGENS E INSTRUMENTOS

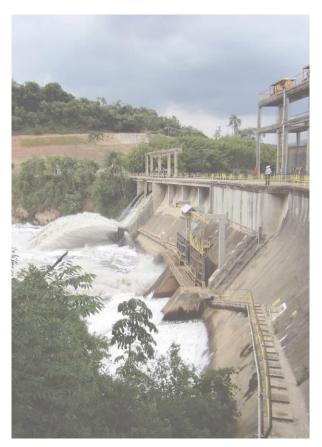
DEFINIÇÃO:

Lei Federal 12.334/2010, 14.066/2020 e a norma NBR 13.028 (ABNT, 2017)

BARRAGEM*: qualquer estrutura construída de maneira que se possa formar reservatório para armazenar:

- 1 Água
- 2 Acúmulo de sedimentos (em pedreiras, minerações, construções de obras civis)
 - 3 Armazenar rejeitos de minerações
 - 4 Armazenar resíduos industriais
- *Inclui: Estruturas associadas (diques, polders descarregador de fundo, vertedouro, margens laterais etc.)

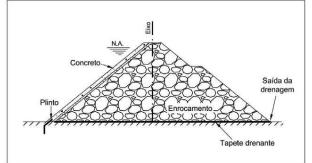
Barragem Limoeiro, SP – 20/01/1977 (1/2 hora depois) FONTE: Carlos E. M. de Sousa e Douglas de O. Reis, 2019



TIPOS DE BARRAGENS:

Concreto: Arco (simples e duplo), Gravidade, Contraforte,
Compactado a rolo, Ciclópico etc. (ver relatório SIMA – 2019)

Barragem de Vajon - França FONTE: Jonathan Bruno Moreira, José Walter Curcino Souza Junior, 2020


TIPOS DE BARRAGENS:

• **Enrocamento**: construída com blocos de rocha compactados

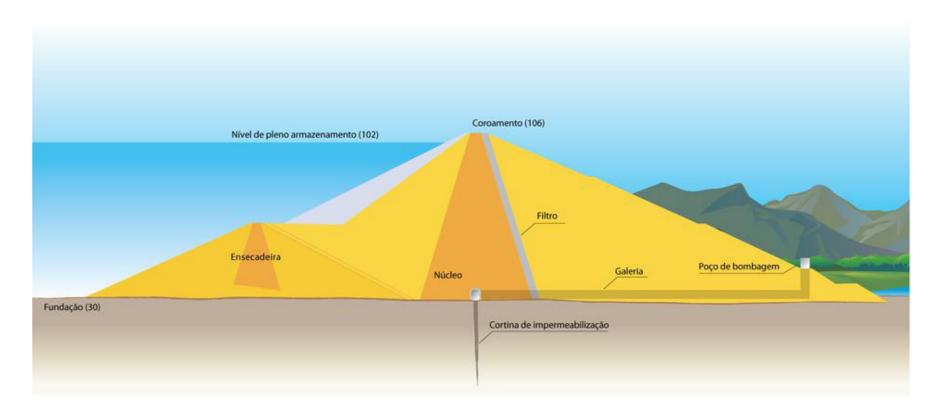
FONTE: https://live.staticflickr.com/8845/1787800 2729_cc3cf56c7f.jpg

FONTE: São Paulo: SIMA, 2019

Barragem Foz do Areia

FONTE: https://www.viajeparana.com/sites/viajeparana/arquivos_restritos/files/styles/escala_e_corta_915_555_/public/imagem/2019-04/usina_1.png?itok=BhF4FzQP

TIPOS DE BARRAGENS:


• Terra (solo): construída com solo (terra) compactado

Barragem Euclides da Cunha FONTE: Carlos Eduardo Melo de Sousa e Douglas de Oliveira Reis

TIPOS DE BARRAGENS:

• **Terra**: Homogênea, Zoneada etc.

 $FONTE: https://www.aguasdoalgarve.pt/sites/aguasdoalgarve.pt/files/infraestrutura/odelouca/barragem_alcado.jpg$

TIPOS DE BARRAGENS:

Mais comuns: Barragem de Terra e Barragem Mista

TIPOS DE BARRAGENS:

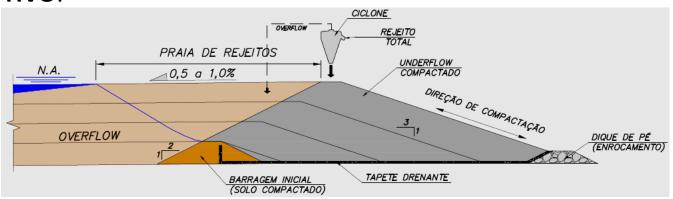
 Rejeitos de Mineração e Resíduos Industriais

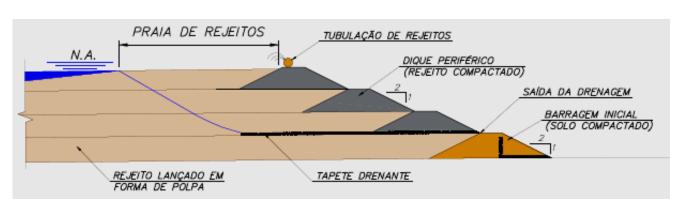
FONTE:

https://mamnacional.org.br/files/2018/08/yama na_5_20140213_1873740406-1000x600.jpg

FONTE:

https://www.noticiasdemineracao.com/w-images/566a650e-9115-4d64-bb2e-8c2d6e2b34a1/5/1104BarragensVargem GrandeMaravilhasII-1024x475.jpg



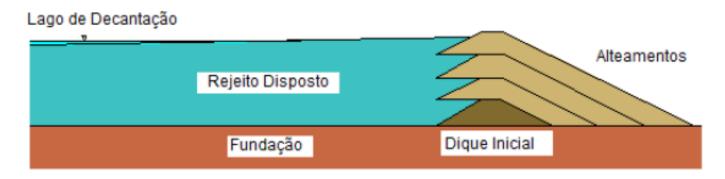

BARRAGENS DE REJEITOS DE MINERAÇÃO e RESÍDUOS INDUSTRIAIS:

Material de Construção

Próprio REJEITO da Mineração

PROCESSO CONSTRUTIVO:

FONTE: São Paulo: SIMA, 2019



BARRAGENS DE REJEITOS DE MINERAÇÃO e RESÍDUOS INDUSTRIAIS:

Material de Construção

Próprio REJEITO da Mineração

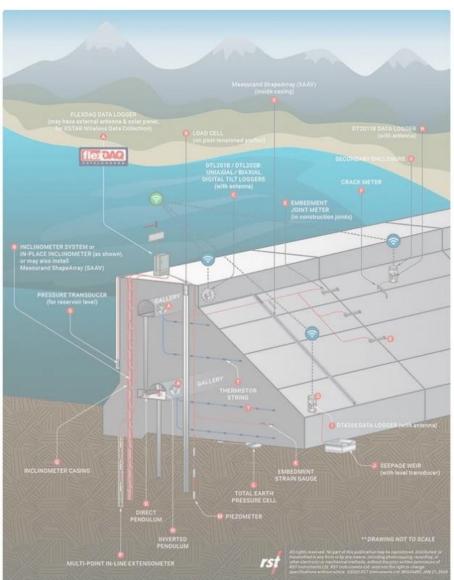
PROCESSO CONSTRUTIVO:

FONTE: PUC-RIO – Certificação Digital nº 1012285/CA https://www.maxwell.vrac.puc-rio.br/20720/20720 3.PDF

BARRAGENS DE REJEITOS DE MINERAÇÃO:

Mosaic Fertilizantes, Cajati, SP

FONTE: Relatório do GT Barragens SEM/SMA/SSRH/CMIL, 2016



INSTRUMENTAÇÕES/MONITORAMENTO

Instalação na construção e na operação (complementar aos da construção)

- Nível d'água no reservatório Régua com cota
- Nível d'água no interior do corpo da barragem (exceto de concreto) MNA
- Pressão de água no corpo e fundações Piezômetros
- Marco superficial
- Inclinômetro (para estruturas rígidas)
- Extensômetros mede deslocamento
- Triaxial mede deslocamento em três eixos ortogonais
- Estação total localização (cota e coordenadas)

INSTRUMENTAÇÕES/MONITORAMENTO

Inovações em instrumentação:

- Drone
- Sismógrafos
- Scanner
- Fibra de vidro etc.

FONTE: https://www.alphaomega-electronics.com/18500-thickbox_default/rstar-l900-adquisicion-de-datos-inalambrica-para-instrumentos-geotecnicos.jp

AVALIAÇÃO DA SEGURANÇA DE BARRAGENS

LEVANTAMENTO DE CAMPO - VISTORIA PERIÓDICA:

- Profissionais experientes (Engenheiros e geólogos)
- Empregar critérios e normas vigentes OIA
- Registro em plantas e imagens datadas
- Funcionamento dos instrumentos
- Análise dos resultados históricos das instrumentações
- Análise da evolução das anomalias
- Reconhecimento detalhado de anomalias (ou patologias) na superfície do corpo da barragem e margens vizinhas
 - Erosões, árvores no corpo da barragem, surgência de água na barragem e áreas das margens de jusante
 - Fissuras e trincas em estruturas rígidas

FONTE: Marília S. B. de Camargo Nicolas B. Burger

Barragem PCH de Pirapora FONTE: Alessandro F. C. e Tatiane S. de Queiroz, 2019

CLASSIFICAÇÃO SEGURANÇA DA BARRAGEM

CLASSIFICAÇÃO DE SEGURANÇA DAS BARRAGENS: Artigo 7º da Lei 12.334/2010 e 14.066/2020, são classificadas por **C**ategoria de **Risco** (CRI) e por **D**ano **P**otencial **A**ssociado (DPA)

Critérios Gerais: Conselho Nacional de Recursos Hídricos (CNRH) - Resolução CNRH 143, de 10 de julho de 2012

Órgão Fiscalizadores: criaram Matrizes de Classificação – CRI e DPA

Grupos: A, B ou C - ANEEL

A, B, C ou D - ANA e DAEE

A, B, C, D ou E – ANM e CETESB

Letra A: risco maior **Letra E**: risco menor

Matrizes de Classificação:

Categoria de Risco (CRI) e Dano Potencial Associado (DPA)

	DANO POTENCIAL ASSOCIADO - DPA ANA - Resolução 236/2017 DAEE - Portaria 3.907/2015-2017		
CATEGORIA DE RISCO - CRI	ALTO	MÉDIO	BAIXO
ALTO	A	В	С
MÉDIO	Α	C	D
BAIXO	Α	D	D

	DANO POTENCIAL ASSOCIADO - DPA ANM - Resolução 70.389/2017		
CATEGORIA DE RISCO - CRI	ALTO	MÉDIO	BAIXO
ALTO	A	В	C
MÉDIO	В	C	D
BAIXO	В	C	E

	The second second second	DANO POTENCIAL ASSOCIADO - DPA ANEEL – Resolução Normativa 696/2015		
CATEGORIA DE RISCO - CRI	ALTO	MÉDIO	BAIXO	
ALTO	A	В	В	
MÉDIO	В	C	C	
BAIXO	В	C	C	

	DANO POTENCIAL ASSOCIADO - DPA CETESB - DD 279/2015/C		
CATEGORIA DE RISCO - CRI	ALTO	MÉDIO	BAIXO
ALTO	Α	Α	В
MÉDIO	A	В	C
BAIXO	В	С	D

1. IDENTIFICAÇÃO DO EMPREENDIMENTO	
Empreendedor	
Nome da barragem	Data

2. CATEGORIA DE RISCO	
Pontuação	Pontos
Quadro 1 – Características Técnicas -CT	
Quadro 2 – Estado de Conservação -EC	
Quadro 3 – Plano de Segurança de Barragens -PS	
Pontuação Total (CRI) = $CT + EC + PS$	

Pontuação das Características Técnicas - CT para classificação da CATEGORIA DE RISCO -CRI

Características Técnicas	Discriminação	Pontos	Pontuação do CT
	H ≤ 15 m	0	
Altura (H)	15 m < H < 30 m	1	
ROSERVICE DE CONTRACTOR	$30 \text{ m} \le \text{H} \le 60 \text{ m}$	2	
	H > 60 m	3	
Commission (I)	L ≤ 200 m	2	
Comprimento (L)	$L \ge 200 \text{ m}$	3	
	Concreto convencional	1	
Tipo de Barragem quanto ao materi-	Alvenaria de pedra/concreto ciclópico/ concreto rolado - CCR	2	
al de construção	Terra homogênea/enrocamento/terra enrocamento	3	
	Rocha sã	1	
	Rocha alterada dura com tratamento	2	
Tipo de fundação	Rocha alterada sem tratamento/rocha alterada fraturada com tratamento	3	
	Rocha alterada mole/saprólito/solo compacto	4	
	Solo residual/aluvião	5	

FONTE: Resolução DAEE 1634 - 10/03/2021

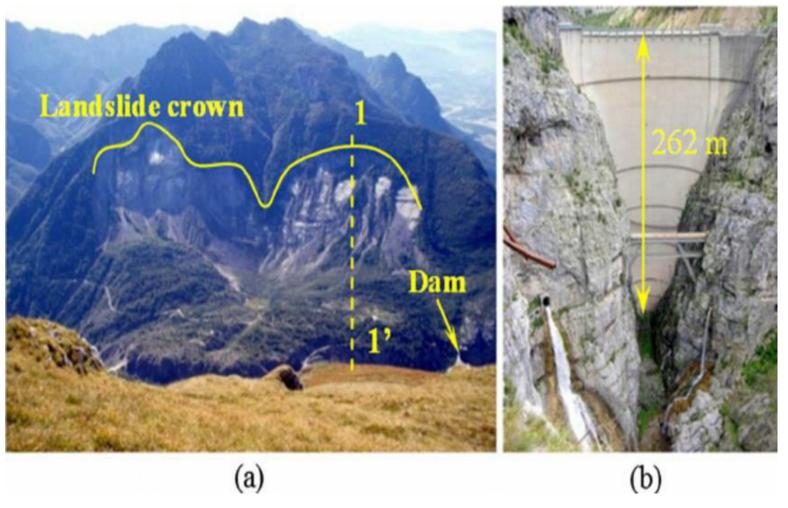
Classificação	CRI	Faixa de pontos do CRI
Alto		$CRI \ge 60 \text{ ou } EC^{(*)} \ge 8$
Médio		35 < CRI < 60
Baixo		CRI ≤ 35

Matriz de Categoria de Risco e Dano Potencial Associado

Categoria de Risco	Dano Potencial Associado			
Categoria de Risco	Alto	Médio	Baixo	
Alto	Α	Α	В	
Médio	В	В	С	
Baixo	С	С	D	

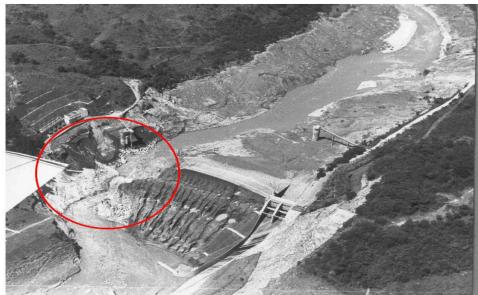
FONTE: Resolução DAEE 1634 – 10/03/2021

COLAPSO DE BARRAGENS



Barragem Malpasset , França – 02/12/1959 FONTE: Armando Mariano, Giulio Scapineli e Fábio Ferrão , 2019

Barragem de Vajont, Itália – 09/10/1963 FONTE: Jonathan B. Moreira e José W. C. Souza Jr. 2019



Barragem Camará, PB – junho, 2004 FONTE: Francisco Sousa e José Mendes, 2019

Barragem de Terra – Euclides da Cunha - 20/01/1977 FONTE: Aloysio Portugal Maia Saliba, 2009

Barragem Limoeiro, SP – 20/01/1977 (1/2 hora depois) FONTE: Carlos E. M. de Sousa e Douglas de O. Reis, 2019

- Foto tirada às 10:45h. Piping em estágio avançado, com grande fluxo de água pelo talude. Notar o trator D9 acima no talude, que tentaria estancar o vazamento lançando material no burado formado.

 Foto tirada às 11:15h. Erosão e fluxo de água aumenta. A erosão no talude de jusante começa a evoluir no sentido da crista. A casa de máquinas é envolvida pela lama.

Barragem Teton, EUA, março/1976 FONTE: Jaime Machado, Marila Lima Mendes, Priscila D. D. Ferracini, , 2019

Barragem Teaton, EUA, março/1976 FONTE: Jaime Machado, Marila Lima Mendes, Priscila D. D. Ferracini, , 2019

Barragem Teaton, EUA, março/1976 FONTE: Jaime Machado, Marila Lima Mendes, Priscila D. D. Ferracini, , 2019

Seu desafio é nosso.

OBRIGADO

