

COMUNICAÇÃO TÉCNICA

Nº 179277

	Electrospun poly	ymeric membranes f	or tissue en	gineering	gand cell g	growth
--	------------------	--------------------	--------------	-----------	-------------	--------

Maria Helena Ambrosio Zanin

Palestra apresentada no INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE AND ENGINEERING, 2024, Tokyo. **Lecture....** 28 slide.

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPRODUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT

Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Dra. Maria Helena Ambrosio Zanin mhzanin@ipt.br

10/17/2024

Outline

- Presentation of IPT
- Tissue engineering
- Electrospinning process
- Polymers applied in scaffold development
- Case studies of scaffold at IPT
- Final considerations

WHO ARE WE?

IPT PROVIDES TECHNICAL SOLUTIONS
FOR INDUSTRY, GOVERNMENTS AND
SOCIETY, ENABLING THEM TO
OVERCOME THE CHALLENGES OF
OUR TIME

INCOMES

OUR NUMBERS (2022)

125 YEARS OF CONTRIBUTIONS TO SOCIETY

> 1,000 EMPLOYEES AND PARTNERS

41% REVENUE IN INNOVATION PROJECTS

> 1,830 CUSTOMERS SERVED

SATISFIED CUSTOMERS

NPS 84
(LEVEL OF EXCELLENCE)

> 19,900 TECHNICAL DOCUMENTS ISSUED

> 2,000 TESTING AND
ANALYSIS PROCEDURES
IN THE PORTFOLIO

10th International Conference on

Materials Science & Engineering October 17-18, 2024 | Tokyo, Japan

BUSINESS UNITS

BIONANOMANUFACTURING

Processes, Chemistry, Biotech, Nanotech, Microfabrication

CITIES, INFRASTRUCTURE AND ENVIRONMENT

Territorial planning, Sustainability, Risks, Civil works

ENERGY

Generation, Infrastructure, Efficiency, Clean energy

BUILDING AND HOUSING

Confort, Performance, Safety, Materials, Sustainability

ADVANCED MATERIALS

Metallic, Polymeric, Composite, Cellulosic, Corrosion

DIGITAL TRANSFORMATION

IoT, Embedded Systems, Intelligent Transport Systems, AI, Analytics

METROLOGICAL AND REGULATORY TECHNOLOGIES

Mechanics, Electrical, Flow Measurement, Aerodynamics, Chemistry

BIONANOMANUFACTURING CENTER

INDUSTRIAL BIOTECHNOLOGY

BIOPROCESS DEVELOPMENT AND SCALE-UP
GENETIC ENGINEERING
TECHNICAL AND ECONOMICAL FEASIBILITY OF PROCESSES
WASTE UTILIZATION
MICROBIOLOGY

MICROMANUFACTURING

MICROFLUIDIC DEVICES
SENSORS, ACTUATORS AND EMBEDDED SYSTEMS
MICROFABRICATION
MINIATURIZATION OF DEVICES, SYSTEMS, AND PROCESSES

CHEMICAL PROCESSES AND PARTICLE TECHNOLOGIES

CHEMICAL TECHNOLOGY
NANOTECHNOLOGY
ENCAPSULATION AND CONTROLLED RELEASE SYSTEMS
INDUSTRIAL CRYSTALLIZATION
FUNCTIONAL MATERIALS

CHEMISTRY AND MANUFACTURES

ANALYTICAL DEVELOPMENT
TECHNICAL TEXTILES
PPES — PERSONAL PROTECTIVE EQUIPMENT
FOOTWEAR
OPINIONS FOR TAX CLASSIFICATION AND LEGAL ISSUES

40 PEOPLE

9 PhDs9 MScs15 GRADUATES7 TECHNICIANS

9 PEOPLE

3 PhDs 2 MScs 4 GRADUATES

34 PEOPLE

7 PhDs 5 MScs 17 GRADUATES 5 TECHNICIANS

38 PEOPLE

07 MScs 20 GRADUATES 11 TECHNICIANS

ISO 17025 AND ISO 9001 ACCREDITATION

O IPT opens it campus to the largest open innovation action in hardtech in Brazil, connecting distinct sotckholders of this ecosystem.

Cornerstone of the CITI Project – São Paulo State International Technology and Innovation Center.

TISSUE ENGINEERING

Interdisciplinary field that applies engineering, biology and life sciences principles to developing biological substitutes that can maintain, restore, or improve the function of organs and tissues

TISSUE ENGINEERING

Seeding of cells in combination with growth factors on a three-dimensional (3D) matrix, referred to as "a scaffold", which acts as a temporary framework on which cells can adhere, grow and differentiate in vitro before implantation *in vivo*

Cell isolation **Implantation** Patient Growth factor **Cell expansion** Tissue development 3D scaffold

Transplantation of cells isolated from a healthy part to an injured tissue

Injection of factors that initiate/induce tissue regeneration like growth factors, differentiation factors, polysaccharides, and peptides to a targeted site

Asadian et al. 2020

Schematic of the scaffold-based tissue engineering approach

TISSUE ENGINEERING

Requirements that have been identified as crucial to the scaffold Asadian et al. 2020

- □ It needs to be bio-compatible to integrate well with the host body without eliciting any mutagenic, carcinogenic, or cytotoxic behavior which can cause a major inflammatory response.
- ☐ The scaffold must possess the mechanical properties necessary to temporarily offer structural support until new tissue has formed.
- ☐ The scaffold must possess surface properties that allow attachment, migration, proliferation, and differentiation of cells.
- ☐ The scaffold must be biodegradable in a way that additional surgery is not required for implant removal. Ideally, the degradation rate should match the rate of new tissue formation.
- ☐ The porosity of the engineered scaffold and the scaffold's surface-volume ratio should be high to enable cell attachment, to provide in-growth sites for cells to adhere and proliferate, and to facilitate nutrient exchange upon in vitro or in vivo culture.
- ☐ The scaffold should simulate the native extracellular matrix (ECM) both in structure as well as in biological function. The ECM is known to have a fibrillar structure: collagen, the most abundant ECM protein in the human body, is made of continuous fibers with diameters that vary in the ranges of 50 to 500 nm.

SCAFFOLD BASED ON NANOFIBER

Nanofiber Scaffolds: Flexible and porous obtained by the Electrospinning process

- ✓ High surface area and porosity
- ✓ Substrate for cells until a new extracellular matrix is regenerated in the area
- ✓ Biodegradable
- ✓ Biocompatible

Schematic of electrospinning monoaxial process

PCL:Gelatin nanofiber composite

Biomaterials relies on four main classes of materials:

i. Polymers,

ii. Ceramics,

iii. Metals

iv. Composites (blends and combinations of the aforementioned materials).

Biomaterials: natural or synthetic sources

Materials	Degradation period	Hidrophobicity
Polycaprolactone (PCL)	> 20 months	Hydrophobic
Poly L-lactic acid (PLLA)	20 ≈ 60 months	Hydrophobic
Polydioxanone (PDO)	6 months	Hydrophilic
Polyglycolic acid (PGA)	1 ≈ 4 months	Hydrophilic
Poly (lactic-co-glycolic acid) (PLGA)	2 months	Depend of PLA and PGA compositions.
		Increase of PLA => less hydrophilicity

Natural and Chemically modified natural materials				
Cellulose and its derivatives and lignin	Drug release etc.			
Chitosan	Antimicrobial Medical application			
Proteins (e.g. collagen and fibrinogen, grow factor)	Medical application such as drug delivery and tissue engineering			
Gelatin	Tissue engineering			
Collagen	Tissue engineering			

Natural Polymeric

Gelatin

Synthetic Polymeric

SET UP OF ELECTROSPINNING PROCESS TO PRODUCE POLYMERIC MEMBRANES

- Simple nozzle or monoaxial electrospinning Systems that employs only one capillary containing the polymer solution to be electrospun in the presence of high voltage.
- Coaxial electrospinning or coaxial electrospray Basically, in coaxial electrospinning, two capillaries /needles are arranged coaxially to dispense two different solutions, for example, polymer solution and substance to be encapsulated, concurrently with a controlled flow in the presence of high voltage.

Fonte de alta tensão

Nanospinner 24-XP

DIFFERENT MORPHOLOGIES OF NANOFIBERS DEVELOPED BY ELECTROSPINNING AT IPT

PCL PLGA

PCL:Gelatin

Conduit wall PCL/PLGA

(Asadian et al.2020)

CASE STUDIES OF THE SCAFFOLD AT IPT BASED ON THE THEME "DEVELOPING AND UNDERSTANDING MATERIALS FOR USE IN INNOVATIVE ENGINEERING **APPLICATIONS**"

Kimura· VT; Zanin MHA; Wang, SH. Influence of thickness on the properties of electrospun PCL/gelatin nanofiber scaffolds. Polymer Bulletin. 2024.

Mechanical tensile strength

Wettability

Alligned nanofiber scaffold for cardiomyocytes based on induced pluripotent stem cells

nanofiber alignment - PCL 10min

0,12

0,10

0,08

0,06

0,04

0,02

0,00

-90-80-70-60-50-39-29-19 -9 1 11 21 31 41 52 62 72 82

horizontal horizontal fit

FINAL CONSIDERATIONS ON SCAFFOLD CONSTRUTION USING ELESCTROSPINNING TECNOLOGY

- ✓ Vascularization of the constructed tissues.
- ✓ The precise insertion of different cell types into porous 2D or 3D scaffolds.
- ✓ The type of construction material, which can interfere with cell differentiation when adhering stem cells.
- ✓ Biodegradability of materials/polymers.
- ✓ Material degradation time compatible with the regeneration time of the target tissue.

- ✓ The choice of polymer and solvent in the electrospinning process is decisive for the end application, considering that the polymer can be electrospun and the residual solvent is not a contaminant for the end product.
- ✓ Although this technology is simple, the adjustment of the process needs to be considered for each polymer used and a rigorous study of the process variables must be carried out.
- ✓ Stability of the functionalization/binding of the molecule on the scaffold in biological fluid and/or sterilization.
- ✓ Electrospinning nanofibers can mimic the structure of the natural extracellular matrix, making them promise for the application in tissue engineering, as the scaffold as example.

Thank you!

Dra. Maria Helena Ambrosio Zanin mhzanin@ipt.br

- in linkedin.com/school/iptsp/
- instagram.com/ipt_oficial/
- youtube.com/@IPTbr/

