

COMUNICAÇÃO TÉCNICA

Nº 179290

Effects of heat treatment temperature on the microstricuture and some mechanical properties of C36000 BRASS

Michelle Midori Onishi Leonardo Rodrigues Danninger Carlos Triveño Rios

> Palestra apresentado no CONGRESSO ANUAL DA ABM, 77., 2024, São Paulo. 14 slides.

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPRODUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

EFFECTS OF HEAT TREATMENT TEMPERATURE ON THE MICROSTRUCUTURE AND SOME MECHANICAL PROPERTIES OF C36000 BRASS

Michelle Midori Onishi – Paranapanema S.A / Universidade Federal do ABC (UFABC)

Leonardo Rodrigues Danninger – Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT) / Escola Politécnica da USP (EPUSP-PMT)

Carlos Triveño Rios – Universidade Federal do ABC (UFABC)

September 3, 2024

Introduction

What is Brass and why is it used?

- ✓ Copper alloy with addition of Zinc (Zn)
- Excellent combination of physical and mechanical properties
 - ✓ high corrosion resistance
 - ✓ high thermal and electrical conductivity,
 - \checkmark good formability, and machinability

Main commercial alloys

- $\checkmark \alpha$ brass alloys
- ✓ Dual phase brass alloys (α + β brasses)
- ✓ β brass alloys

atomic number —		29	63.546	atomic weight
symbol —		Cu)- []-	of higher-valence ox
electron configurat	ion	[Ar]3d ¹⁰ 4s ¹		crystal structure
name —		copper		* physical state at 20 °C (68 °F)
Tr	ansition metal	S	- Soli	d
Fa	ace-centred cu	ubic	Wea	akly basic
incyclopædia Britann	ica, Inc.			
incyclopædia Britann inc atomic number –	ica, Inc.	30	65.38	atomic weight
ncyclopædia Britann inc atomic number – symbol –	ica, Inc.	30 7 n	65.38	atomic weight acid-base properties of higher-valence oxi
ncyclopædia Britann inc atomic number – symbol – electron configurat	ica, Inc.	³⁰ Zn	65.38 •	atomic weight acid-base properties of higher-valence oxi
ncyclopædia Britann inc atomic number – symbol – electron configurat name –	ica, Inc.	30 Zn [Ar]3d ¹⁰ 4s ² zinc	65.38 •	atomic weight acid-base properties of higher-valence oxi crystal structure physical state at 20 °C (68 °F)
ncyclopædia Britann inc atomic number – symbol – electron configurat name –	ica, Inc.	30 Zn [Ar]3 <i>d</i> ¹⁰ 4 <i>s</i> ² zinc	65.38 •	atomic weight acid-base properties of higher-valence oxi crystal structure physical state at 20 °C (68 °F)
ncyclopædia Britann inc atomic number – symbol – electron configurat name – Tr	ion	30 Zn [Ar]3 <i>a</i> ¹⁰ 4 <i>s</i> ² zinc	65.38 •	atomic weight acid-base properties of higher-valence oxi crystal structure physical state at 20 °C (68 °F)

Introduction

Dual phase brass alloys

- ✓ Complex Mechanical behavior
 - ✓ α phase → better cold formability, corrosion resistance
 - ✓ β phase → harder phase, excellent hot plasticity

Brass Alloy UNS-C36000

- ✓ Dual phase brass alloys with 3%Pb
- ✓ Effect of lead presence
 - ✓ Better machinability
 - ✓ Possible deleterious effects on formability

Experimental procedure Specimens preparation and Heat treatment

Geometry of the specimens intended for mechanical and microstructural characterization

<u>Material</u>

- ✓ Extruded wires of C36000 brass alloys
- ✓ 2 specimens per condition: Microestrutural characterization and Mechanical characterization

Heat Treatment

- ✓ Muffle-type electric resistance furnace
- ✓ Air atmosphere
- ✓ Temperatures → 250 °C to 850 °C / 1h
 - \checkmark Water quenching

Experimental procedure Microstructure and Mechanical Characterization

Microstructure Characterization

- ✓ Optical Microscopic
- ✓ SEM Analyses
- ✓ XRD Analyses
- ✓ EDS Analyses

Phases analyses and quantification

Phases identification

Mechanical Characterization

- ✓ Vickers Hardness test
 - ✓ ASTM E384-17
- ✓ Compression tests
 - ✓ ASTM E9-19

Results and Discussion Characterization of brass as received

3 microconstituents

- ✓ White dots \rightarrow lead (Pb) particles
- ✓ Light gray phase $\rightarrow \alpha$ phase
- ✓ Darker gray phase $\rightarrow \beta$ phase

<u>Average grain size</u> → (9.6 ± 0.6) µm

Black regions → microporosity

EDS Spectrum from a Microporosity in the Microstructure of Brass C36000 as received

SEM image (backscattered electron mode) of C3600 Brass as received

Micrographs of C36000 Brass after annealing at temperaturas A) 250 °C-1h (OM), B) 250 °C-1h (SEM), C) 400 °C-1h (OM), D) 400 °C-1h (SEM), D) 550 °C-1h (OM) and E) 550 °C-1h (SEM)

Micrographs of C36000 Brass after annealing at temperatures A) 650 °C/1h (OM), B) 650 °C/1h (SEM), C) 750 °C/1h (OM), D) 750 °C/1h (SEM), E) 850 °C/1h (OM) and F) 850 °C/1h (SEM)

Phases identified with XRD:

 $\checkmark \alpha$ phase

 $\checkmark \beta$ phase

✓ Pb peaks

X-ray diffraction (XRD) patterns of the asreceived sample and samples annealed at 250, 400, 550, 650, 750, and 850°C from the sample extruded at 790°C - C36000 Brass.

Phase fraction

- ✓ Decrease of α phase
- ✓ β phase fraction → Similar behavior as grain size evolution
 - ✓ Stable up to 400 °C
 - Significant increase at temperatures above

✓ 850 °C/1h \rightarrow ~ 30%

Volume fraction of phases α , β , and microporosity of samples annealed at temperatures of 250, 400, 550, 750, and 850°C for one hour.

Results and Discussion Mechanical Characterization

Maximum Compressions Strenght

 ✓ Increase in mechanical resistance (MCS) with increasing annealing temperature up to 550°C

Temperatures above 550°C

- ✓ Decrease in MCS and deformation
 - Significant increase in the fraction of
 β phase and grain size
- ✓ Increase in hardness
 - ✓ Significant increase in the fraction of *β* phase

a) Maximum compressive strength and strain as a function of annealing temperature, and b) Vickers microhardness as a function of annealing temperature, at 250, 400, 550, 650, 750, and 850°C for 1h.

Conclusion

After evaluating the results, it can be concluded that:

- Specimens did not show significant grain size changes when annealing treatment was performed between 250°C and 400°C, indicating that under these conditions, the grain size remains practically stable.
- Annealing temperatures above 400°C result in exponential grain growth, as well an exponential growth in the β-phase fraction.
- ✓ Regarding dezincification, for the one-hour heat treatment time, it can be concluded that it only becomes a concern at temperatures above 750°C, since only the specimens treated at 750°C and 850°C exhibit dezincification characteristics.
- From a mechanical properties standpoint, there was increase in the mechanical strength with increasing temperature up to 550°C. However, there was a decrease in mechanical strength and an increase in hardness at temperatures above 550°C due to the increase in volume fraction and grain size of the β-phase, which is harder and less ductile than the α-phase. Further studies are needed to better understand the observed behaviors.

Thank you

Leonardo Rodrigues Danninger

leonardo.danninger@usp.br

<u>ldanger@ipt.br</u>

Linked in

