

COMUNICAÇÃO TÉCNICA

Nº 179296

Failure analysis of a fractures orthopedic implant

Luiza de Brito Fantin Marcelo F. Moreira

> Palestra apresentado no INTERNATIONAL CONFERENCE ON ENGINEERING FAILURE ANALYSIS, ICEFA, 10., 2024, Athens, Greece. Lecture.. 15 slides.

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPROUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Failure analysis of a fractured orthopedic implant

Luiza B. Fantin

Marcelo F. Moreira

Institute for Technological Research of the State of São Paulo (IPT)

July 10th, 2024

Tenth International Conference on Engineering Failure Analysis – ICEFA X

Failure case

- Stainless steel bone plate + screws - internal fixation device
- 84-year-old, 60 kg, female patient
- Not the first implant to fail

Patient's left femur. Implant fracture 6 months after surgery.

Failure case

- Stainless steel bone plate internal fixation device
- 84-year-old, 60 kg, female patient
- Not the first implant to fail
- Only a few parts available for this study. No screws.

Chemical composition Microstructure

In accordance with ISO 5832-1 requeriments (similar to AISI 316L)

Hardness: (305 ± 10) HV1

Element	Failed implant (wt%)	ISO 5832-1 requirements (wt%)
С	0.021 ± 0.002	≤ 0.030
Si	0.335 ± 0.153	≤ 1.0
Mn	1.637 ± 0.061	≤ 2.0
Р	0.0082 ± 0.0003	≤ 0.025
S	0.0011 ± 0.0002	≤ 0.010
Ν	0.062 ± 0.002	≤ 0.10
Cr	18.2 ± 0.8	17.0 – 19.0
Мо	2.71 ± 0.11	2.25 – 3.00
Ni	14.8 ± 0.7	13.0 – 15.0
Cu	0.072 ± 0.004	≤ 0.50
X = 3.3%Mo + %Cr	27.14	≥ 26

Fatigue crack propagation towards the bottom of the plate (next to the bone)

Most of the fracture surface corresponds to stable crack propagation

ıpt 🚃

Secondary cracks on the top surface of the implant (away from the bone)

Secondary cracks on the bottom surface of the implant (next to the bone)

All compression holes had tool marks

Although we could not find evidences directly relating them to fatigue crack nucleation, they are not allowed by:

- ABNT NBR 12932/ASTM F86 (Surface Preparation and Marking of Metallic Surgical Implants)
- ABNT NBR 15676-1/ASTM F382 (Metallic bone plates Part 1: Requirements).

Exploratory Finite Element Analysis

Based on references [1] and [2]

Holes #6, #7 and #11: no screws Bone fracture region = gap

Loading: 600 N at 11° angle to simulate weight bearing (leads to bending stresses)

[1] C. Kanchanomai, V. Phiphobmongkol, P. Muanjan, Fatigue failure of an orthopedic implant – A locking compression plate, Engineering Failure Analysis 15 (2008) 521–530. https://doi.org/10.1016/j.engfailanal.2007.04.001

[2] B. Gervais, A. Vadean, M. Raison, M. Brochu, Failure analysis of a 316L stainless steel femoral orthopedic implant, Case Studies in Engineering Failure Analysis 5–6 (2016) 30–38. https://doi.org/10.1016/j.csefa.2015.12.001.

Hole #6: 748 MPa Hole #7: 408 MPa

```
Fatigue limit = 394 MPa [2]
(cold-worked 316L, R = 0)
```

Fatigue failure due to excess loading (without bone healing) seems possible

What can lead to implant failure?

Individual health characteristics and post-operative behavior

e.g.: bone heals very slowly, patient does not follow postoperative recommendations

Design and manufacturing issues e.g.: presence of stress raisers, wrong material, inadequate microstructure

Implant installation errors e.g.: introducing surface defects while installing the implant, wrong implant positioning

Source: [4]

In this case...

- Second failure case for the patient
- Multiple crack nucleation
- Patient's profile
- FEA

 ✓ Tool marks on compression holes (maybe)

Not allowed by the relevant standards

 ✓ Outside the scope of this investigation

Previous failure could have called for a different surgical approach?

[4] M. Bowers, G. Ganot, L. Malito, B. Kondori, A. Ezechukwu, F. Svedlund, B. James, Failure Analysis of Medical Devices, J Fail. Anal. and Preven. 22 (2022) 154–180. https://doi.org/10.1007/s11668-021-01332-2.

This failure in the context of Brazil

- Unreliable implant certification procedures
- Implant retrieval does not follow ABNT NBR ISO 12891-1 recommendations
- Brazilian Health Regulatory Agency should take immediate actions to monitor and investigate failures of orthopedic implants

In this case:

- The prior failure was not analyzed
- Screws were not available for analysis
- Poor implant retrieval documentation (e.g.: if the device was damaged during explantation)
- Tool marks were not in accordance with the relevant standards

Thank you!

Luiza B. Fantin <u>luizafantin@ipt.br</u>

Marcelo F. Moreira <u>mfmoreir@ipt.br</u>

