

COMUNICAÇÃO TÉCNICA

Nº 179339

CFD multiscale simulation of multiple gas-solid reactions in the industrial ironmaking process

Patrícia Metolina Alexander Ariyoshi Zerwas André Luiz Nunis da Silva Roberto Guardani

> Palestra apresentado no: SEMINÁRIO DE REDUÇÃO DE MINÉRIOS E MATÉRIAS-PRIMAS, 52., 2024, São Paulo. **Anais...** 12 p

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPRODUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

CFD MULTISCALE SIMULATION OF MULTIPLE GAS-SOLID REACTIONS IN THE INDUSTRIAL IRONMAKING PROCESS

Patrícia Metolina – Instituto de Pesquisas Tecnológicas / Escola Politécnica da Universidade de São Paulo
 Alexander Ariyoshi Zerwas – Instituto de Pesquisas Tecnológicas / Escola Politécnica da Universidade de São Paulo
 André Luiz Nunis da Silva – Instituto de Pesquisas Tecnológicas
 Roberto Guardani – Escola Politécnica da Universidade de São Paulo

Agosto 2024

Direct Reduction Of Iron Ore (DRI)

Direct Reduction of Iron Ore (DRI)

MIDREX Process

Direct Reduction of Iron Ore (DRI)

Hydrogen Direct Reduction (H-DR) Process

Non-catalytic gas-solid reactions models

Non-catalytic gas-solid reactions models

Particle (inside modeling)

- ✓ Mass and heat transport mechanisms
- ✓ Structural changes over time
- ✓ Physical properties of the systems changes

Moving / Packed Bed

- ✓ Mass and heat transport mechanism
- ✓ Fluid flow between particles
- ✓ Random arrangement of particles

OBJECTIVES

Develop a multiscale mathematical model to represent non-catalytic gas-solid reactions applied to the direct reduction of iron ore process

- Coupling the transport mechanisms in the moving bed reactor with the transport mechanisms and reaction kinetics that occur inside the pellet.
- ² Validate the models with industrial data.
- ³ Predictions for the hydrogen direct reduction process (H-DR).

✓ Main assumptions:

- steady state reactor operation
- Ideal gas mixture
- Spherical pellet and grain
- Pellet and grain size constant
- Porosity change
- Non-isothermal pellets
- Grain model for pellet

Finite element method

Comsol Multiphysics 6.0

Moving-bed reactor

A_n: Chemical reaction
B_n: Diffusion
F: Film layer
Ceq: Equilibrium concentration

$$\begin{split} R_{1,i\prime} &= \frac{3}{r_g} \frac{1}{W_{i\prime}} \{ [A_3(A_2 + B_2 + B_3 + F) + (A_2 + B_2) (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_1,i\prime}) \\ &- (B_2(A_3 + B_3 + F) + A_3 (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_2,i\prime}) \\ &- [A_2(B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_2,i\prime}) \}, \quad i' = H_2 \text{ or CO} \end{split}$$ $$\begin{split} R_{2,i\prime} &= \frac{3}{r_g} \frac{1}{W_{i\prime}} \{ \left[-(B_2 (A_3 + B_3 + F) + A_3 (B_3 + F))_{i\prime} (C_{p,i\prime} - C_{eq_1,i\prime}) \\ &+ [(A_1 + B_1 + B_2)(A_3 + B_3 + F) + A_3 (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_2,i\prime}) \\ &- [(A_1 + B_1) (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_3,i\prime})] \}, \quad i' = H_2 \text{ or CO} \end{split}$$ $$\begin{split} R_{3,i\prime} &= \frac{3}{r_g} \frac{1}{W_{i\prime}} \{ -[A_2(B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_1,i\prime}) \\ &- [(A_1 + B_1) (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_2,i\prime}) \\ &+ [(A_1 + B_1) (B_3 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_2,i\prime}) \\ &+ [(A_1 + B_1) (A_2 + B_2 + B_3 + F) + A_2 (B_2 + B_1 + F)]_{i\prime} (C_{p,i\prime} - C_{eq_3,i\prime})] \}, \quad i' = H_2 \text{ or CO} \end{split}$$

where:

 $W_{i\prime} = \{(A_1 + B_1)[A_3(A_2 + B_2 + B_3 + F) + (A_2 + B_2)(B_3 + F)] + A_2[A_3(B_2 + B_3 + F) + B_2(B_3 + F)]\}_{i\prime}, \quad i' = H_2 \text{ or } CO$

$$\begin{split} A_{n,i\prime} &= \left[\frac{1}{k_n (1-x_n)^{2/3}} \frac{k_{eq,n}}{1+k_{eq,n}} \right]_{i\prime}, \ n = 1, 2, 3. \\ B_{n,i\prime} &= \left[\frac{(1-x_{n+1})^{1/3} - (1-x_n)^{1/3}}{(1-x_n)^{1/3} (1-x_n)^{1/3}} \frac{r_g}{D_{eff,n}} \right]_{i\prime}, \ n = 1, 2. \\ B_{3,i\prime} &= \left[\frac{1 - (1-x_3)^{1/3}}{(1-x_3)^{1/3}} \frac{r_g}{D_{eff,3}} \right]_{i\prime} \\ F_{i\prime} &= \left[\frac{1}{k_g} \right]_{i\prime} \end{split}$$

Main equation for multi-scale modeling

Pellet scale model (1D) \checkmark Moving-bed reactor scale model (2D) \checkmark Mass balance for gas (i= H_2 , H_2O , CO, CO_2 , N_2) Mass balance for gas $(i = H_2, H_2O, CO, CO_2, N_2)$ $-D_i \nabla^2 C_i + \nabla (C_i u_g) = -(1 - \varepsilon_b) A_p D_{i,eff} \frac{dC_{i,p}}{dr}|_{r=r_p}$ $-D_{i,eff}\frac{\partial^2 C_i}{\partial r} = \frac{2}{r}D_{i,eff}\frac{dC_{p,i}}{dr} + R_i(r,z)$ Mass balance for solid $(j = Fe_2O_3, Fe)$ Mass balance for solid $(j = Fe_2O_3, Fe)$ $\frac{dC_j}{dz} = \frac{3}{r_n^3} \int_0^{r_p} C_{j,p} r^2 dr \left(1 - \varepsilon_b\right)$ $\nabla(C_{p,j}u_s) = (1 - \varepsilon_b)R_i(r,z)$ Heat balance for gas Heat balance for solid $-k_{ceff,p}\nabla^2 T_s + \rho_p C p_{eff,p}\nabla(u_s T_{gs}) - \frac{1}{r^2} \frac{d}{dr} \left(r^2 k_{ceff,p} \frac{dT_s}{dr}\right)$ $-k_g \nabla^2 T_g + \rho_g C p_g \nabla (u_g T_g) = -(1 - \varepsilon_b) A_p h \left(T_g - T_s |_{r=r_p} \right)$ $=\sum_{i=1}^{m}R_{j}(-\Delta H_{n})$ Brinkman equation $\frac{\rho}{\varepsilon_h} \left((u_g \cdot \nabla) \frac{u_g}{\varepsilon_h} \right)$ $k_{ceff,p}$ $Cp_{eff,p}$ Solid + gas in the pellet $= -\nabla P + \nabla \left\{ \frac{1}{\varepsilon_{n}} \left[\mu \left(\nabla u_{g} + \left(\nabla u_{g} \right)^{T} \right) - \frac{2}{3} \mu \left(\nabla u_{g} \right) I \right] \right\} - \left(\kappa^{-1} \mu + \frac{Q_{m}}{\varepsilon_{n}^{2}} \right) u_{g} + F$

Industrial Plant Data

Comparison between the data from Morabake Plant and model

Measured parameters	Plant data	Model data results	Error
Outlet gas composition			
H ₂	32.24 %	32.11 %	0.40 %
СО	21.6 %	21.59 %	0.05 %
H ₂ O	25.05 %	27.2 %	8.58 %
CO ₂	15.46 %	15.45 %	0.06 %
$CH_4 + N_2$	3.65 %	3.65 %	0 %
Temperature	791 K	760 K	3.92 %
Solid conversion	94.8 %	96.5 %	1.79 %

Gas mole fraction distribution at reactor scale

Solid mole fraction distribution at reactor scale

Results and Discussion

Solid mole fraction distribution at pellet scale

Results and Discussion

Temperature distribution at reactor

Gas temperature (K)

Solid temperature (K)

Temperature distribution at pellet scale

Isothermal pellet Biot number < 0.1

Predictions for Hydrogen Direct Reduction process

Solid temperature (K) H₂ mole fraction H₂O mole fraction Gas temperature (K) 9 ×10³ ×10³ 0.9 8 8 8 1.1 1.1 7 7 0.5 7 0.85 1 1 6 0.4 0.9 0.9 5 0.8 0.8 0.8 0.3 0.7 0.7 3 3 0.75 0.2 0.6 0.6 2 2 0.5 0.5 0.7 0.1 1 1 1 0.4 0.4 0 0 0 0.3 -2 -2 2 -2 0 2 m 0 2 m 0 m -2 0 2 m

Gas mole fraction distribution at reactor scale

Temperature at reactor scale

4 x the stoichiometric value required for the global reduction from Fe_2O_3 to Fe (3 moles $H_2/1$ mole Fe_2O_3)

Solid mole fraction distribution at reactor scale

FeO mole fraction

Fe₃O₄ mole fraction

52nd Seminar on Ore Reduction and Raw Materials

Fe mole fraction

 Multiscale model presents a good predictive capacity for the industrial direct reduction process.

✓ non-homogeneous gas flow field inside the reactor.

✓ Improve the partial reduction of the solid phase at the reactor center.

✓ Predictions for Hydrogen direct reduction.

THANK YOU !

Institute for Tecnhological Research (IPT) Escola Politécnica da Universidade de São Paulo (Poli - USP)

corresponding author: pmetoli@gmail.com (Patricia Metolina)

