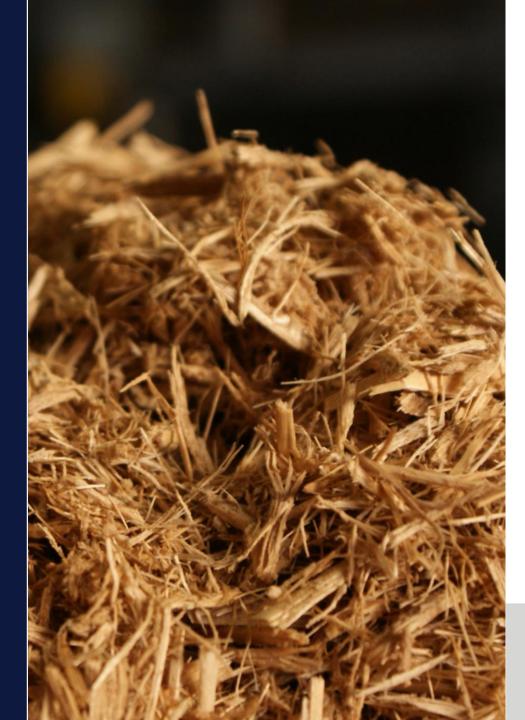


COMUNICAÇÃO TÉCNICA

Nº 179397

Key results KIT-IPT cooperation and green H2


Vittor Rodrigues Santos Alves

Lecture apresentado no: Workshop Kit , UFPR, 1., 2024, Curitiba. 22 slides.

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPROUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970 São Paulo | SP | Brasil | CEP 05508-901 Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Karlsruher Institut für Technologie

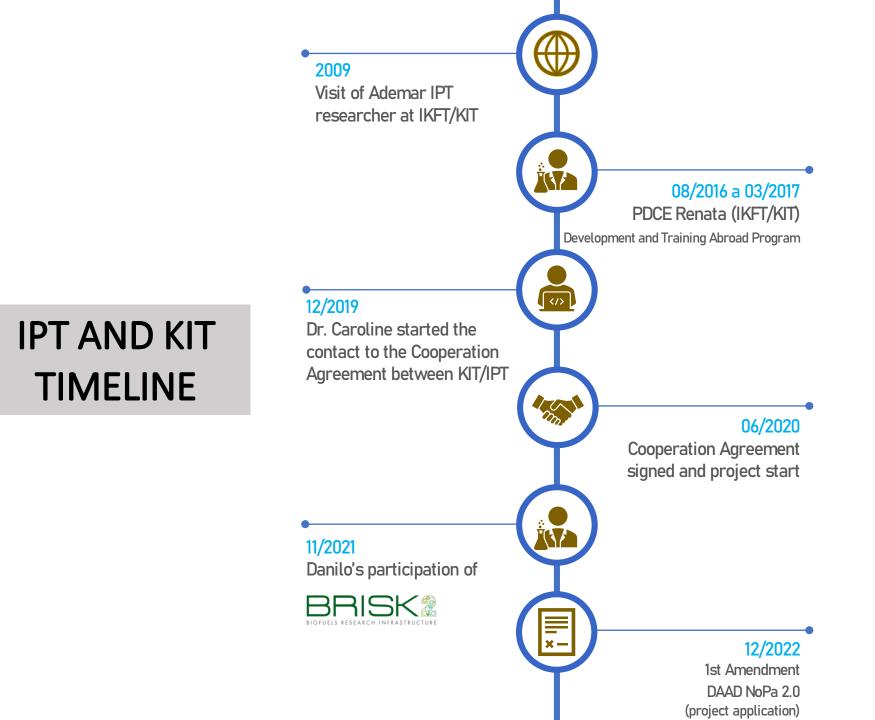
KEY RESULTS KIT-IPT COOPERATION AND GREEN H2

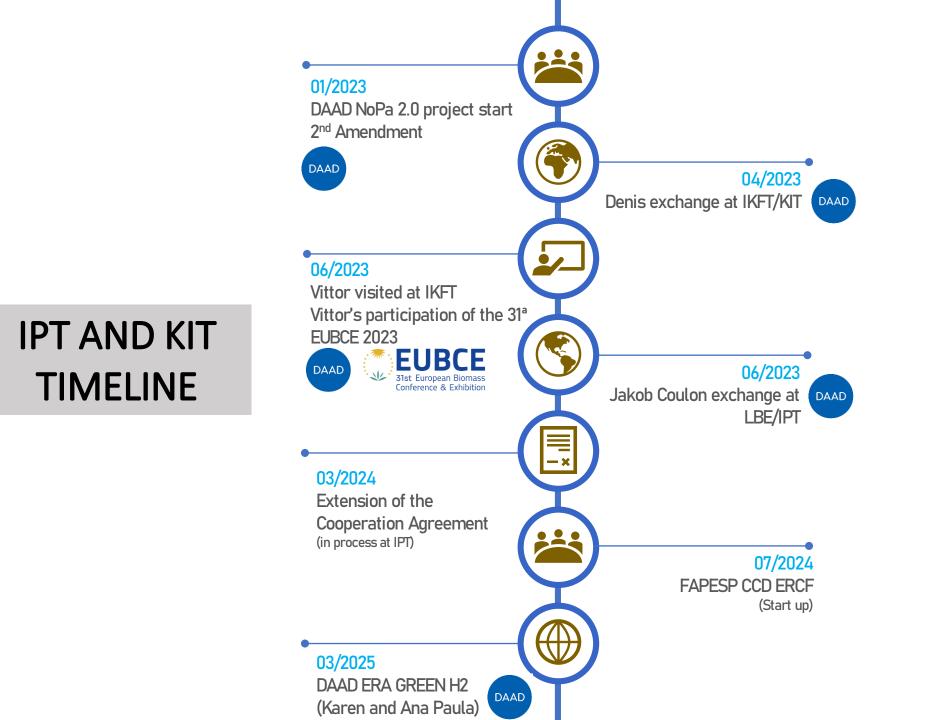
Energy Business Unit

Bioenergy and Energy Efficiency Laboratory

28.10.2024

Vittor Rodrigues Santos Alves




OUTLINES

- Timeline of the Cooperation IPT and KIT
- Cooperation agreement projects
 - Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries
 - DAAD NoPa 2.0
 - Master project Sugarcane bagasse syngas reforming
 - Professional experience Syngas reforming as precursor for chemicals
- Scientific production
- DAAD ERA Green H2
 - Master project Sugarcane bagasse and straw syngas reforming
 - Postdoc project Syngas reforming as precursor for chemicals
- CCD ERCF

COOPERATION AGREEMENT PROJECTS

Cooperation Agreement between IPT and KIT

- 29/06/2020 to 29/06/2024
- Original project: Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries

- 1st and 2nd Amendment of the Cooperation Agreement
 - DAAD NoPa 2.0 program (January/2023 to January/2024)
 - Project: Hydrogen generation from sugarcane bagasse by dry syngas reforming and downstream storage in fuel precursors
 - Responsible coordinator: Dr. Klaus Raffelt
 - Master thesis: Biogenic synthesis gas for the hydrogenation of pyrolysis oil
 - Professional exchange: Catalytic hydrotreatment of fast pyrolysis bio-oil using syngas reforming from sugarcane bagasse gasification composition

Green H₂ projects

VALORIZATION OF SUGARCANE BAGASSE AND STRAW BY THERMOCHEMICAL CONVERSION FOR ENERGY INTEGRATION INTO SUGARCANE REFINERIES

Technical-scientific goals:

- Acid pretreatment assessment for a mixture of sugarcane bagasse and straw (SCB/S-Mix) for the fast pyrolysis.
- Evaluate de organic composition of the fast pyrolysis organic rich condensate (ORC) when the use of ethanol as a quenching medium in the bypass of the Process Development Unit (PDU) from IKFT/KIT.
 - The improvement of fast pyrolysis bio-oil (FPBO) obtained from the fast pyrolysis of SCB and SCB/S-Mix from hydrodeoxygenation (HDO) using different catalyst compositions, including Nb₂O₅ catalysts, which are attractive due to their high solid acidity, greater resistance to water and adjustable morphology → Mariana's PhD thesis (results under publication)
- Technical-economic assessment of SCB and SCS pyrolysis in the industrial context of sugarcane biorefineries
 Bachelor Thesis of Marcel Marín Janssen (IPP/KIT)
 - Henri Steinweg (IKFT)
 - Dr. Axel Funke
 - Dr. Nicolaus Dahmen (IKFT)
 - Prof. Dr. Frank Schultmann (IIP)
 - Dr. Andreas Rudi (IIP)

Project: Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries

54,7 %wt. ash content

Si > Fe > Ca > K

High content of major elements

Pretreatment of SCB/S-Mix

Figure 1. Sugarcane bagasse (SCB)

Figure 2. Sugarcane straw (SCS)

70% SCB and 30% SCS

mixture after (c) SCB/S-Mix-PT

(a) IKFT reactor under stirring.

(b) Collection of the mixture after washing steps in the reactor.

Figure 3. Steps of the SCB/S-Mix pretreatment process

Fast pyrolysis aqueous condensate as acid leaching

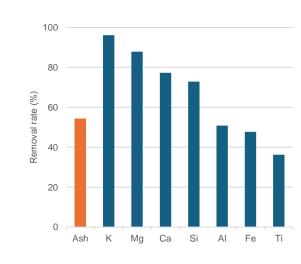


Table 1. Physico chemical characterization of SCB/S-Mix before and after the pretreatment

	SCB/S-Mix	SCB/S Mix- PT
Proximate analysis (wt.%)		
Ash	14,5 ± 2,3	7,8 ± 2,7
Volatile matter	69,1 ± 0,9	77,0 ± 0,5
Fixed Carbon	16,4 ± 0,7	15,2 ± 2,8
Elemental analysis (wt.%)		
С	41,2 ± 0,5	47,5 ± 0,6
Н	5,1 ± 0,1	$5,4 \pm 0,1$
Ν	0,4	0,5 ± 0,1
0	$38,8 \pm 0,9$	$38,8 \pm 3,0$
S	n/a	n/a
Cl	n/a n/a	
Major elements (g kg ⁻¹)		
AI	6,4	3,7
Са	1,5	0,4
Fe	7,8	4,8
К	2,2	0,1
Mg	0,7	0,1
Si	96,4	30,7
Ti	0,8	0,6

Figure 4. Removed ash and major inorganic elements fraction in the pretreated

Project: Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries

Fast pyrolysis of sugarcane biomass

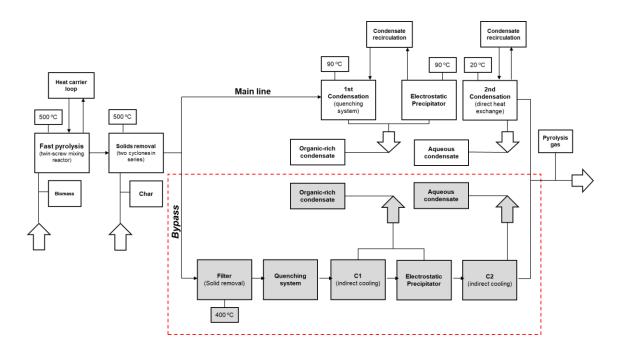
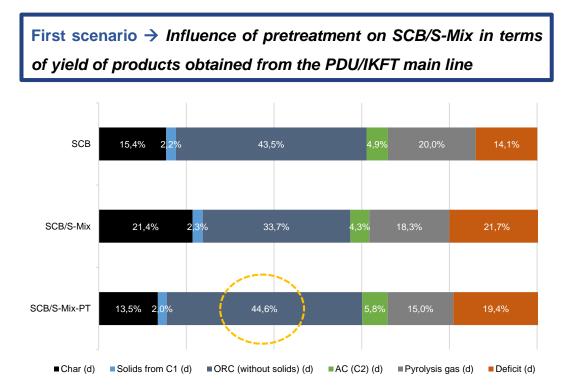
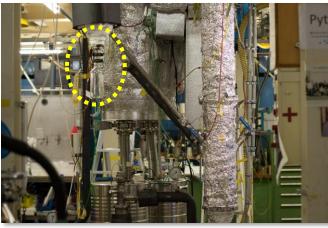
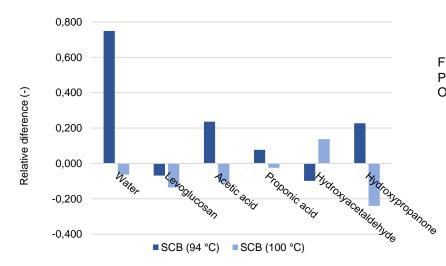


Figure 5 - Block flowchart of each step of the fast pyrolysis process at Process Development Unit (PDU/IKFT). Source: Adapted from Schmitt C. *et al.* (2020).




Figure 6. Mass balance, on a dry basis, of the PDU/IKFT main line for the fast pyrolysis experiments of SCB and untreated and pre-treated mixtures of SCB and SCS.



Project: Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries

Second scenario – Ethanol as quenching medium in the PDU/IKFT bypass. Assessment of the chemical composition of the ORC(s) obtained.

Figura 7. ORC recovery system in the bypass of PDU/IKFT

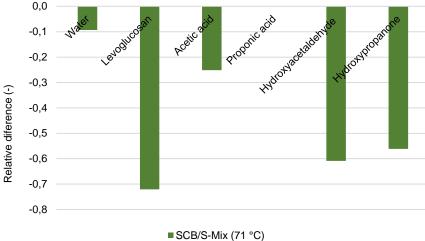
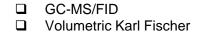



Figure 9. Relative difference of the ORC composition obtained in the PDU/IKFT bypass of the SCB/S-Mix using EtOH-Quench related to the ORC obtained reference experiment.

Figure 8. Relative difference of the ORC(s) composition obtained in the fast pyrolysis experiments of SCB when using EtOH-Quench related to the ORC obtained in the reference experiment.

Project: Valorization of sugarcane bagasse and straw by thermochemical conversion for energy integration into sugarcane refineries

Results under process → **Mariana Miryam Campos Fraga** (PhD thesis) *Manuscript preparation*

Briefly observations:

QM directly affects phase separation during pyrolysis and hydrotreatment.

- Phase separation has a strong influence on the success of HDO and viscosity control.
- Ethanol as QM helped with viscosity problems.
- Ethanol was one of the main components in almost all cases. Regardless of the QM used.

The catalyst was successful in reducing the O/C ratio for all four bio-oils tested.

SCIENTIFIC PRODUCTION

Cooperation Agreement IPT and KIT

Conferences/Congress and others Scientific Events	18	
Manuscript	4	
Bachelor thesis	1	
Master thesis	1	
PhD thesis	1	
HDO Mini-Course	1	Dra. Caroline Carriel Schmitt Prof. Dr. Alberto Wisniewski Jr
Total Scientific Productions	24	considering the production regarding the DAAD NoPa 2.0 program

COOPERATION AGREEMENT IPT AND KIT

Green H2 projects

HYDROGEN GENERATION FROM SUGARCANE BAGASSE BY DRY SYNGAS REFORMING AND DOWNSTREAM STORAGE IN FUEL PRECURSORS

DAAD NoPa 2.0 | 01/2023 to 01/2024

Technical-scientific goals:

Б

 $\mathbf{\Sigma}$

SCB conversion into H_2 and other products from integrated gasification process with thermal reforming and fast pyrolysis, followed by catalytic hydrotreatment of FPBO as a form of H_2 storage.

Optimize thermal reforming by evaluating the process at three different temperatures (930 °C, 1030 °C and 1100 °C), of the gases in their raw and clean form obtained from the gasification of SCB.

- The effect of temperature and process configuration was analyzed in order to obtain a gas with a higher H₂ yield.
- Simultaneously, pure H₂ was used as a precursor in the HDO process of FPBO obtained from the SCB.
 - Stabilization and HDO reactions:
 - 5% Ru/C and 5% Pd/C
 - HDO tests used synthetic gas with a composition similar to previous gasification test carried out in IPT.

Project: Hydrogen generation from sugarcane bagasse by dry syngas reforming and downstream storage in fuel precursors

DAAD NoPa 2.0 | 01/2023 to 01/2024

Biogenic synthesis gas for the hydrogenation of pyrolysis oil

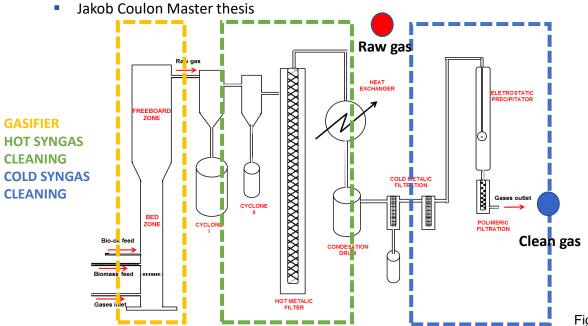
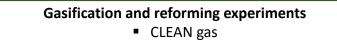



Figure 11. Diagram of LBE/IPT gasification unit

- RAW gas
- Reforming Temperatures: 900, 1000 and 1100 °C.

Figure 12. Connection of the reformer to the LBE/IPT gasification unit

- The highest difference between "Raw" and "Clean" reforming syngas is the presence of water vapor (Dry vs. Steam Reforming)
- Reforming "Raw Syngas" is possible and offers several advantages:
 - Syngas rich in H₂ (H₂/CO>2)
 - Fewer deposits
 - Robust process with fewer steps and better energy efficiency
- Reforming at 1100 °C offers the best results in the temperature range investigated

Project: Hydrogen generation from sugarcane bagasse by dry syngas reforming and downstream storage in fuel precursors DAAD NoPa 2.0 | 01/2023 to 01/2024

- Catalytic hydrotreatment of fast pyrolysis bio-oil using syngas reforming from sugarcane bagasse gasification composition
 - Dênis Correa Meyer and Vittor Rodrigues Santos Alves Professional exchange

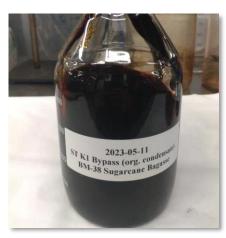
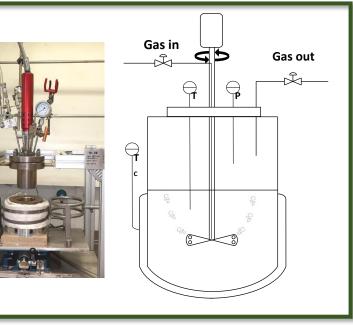



Figure 13. Fast pyrolysis ORC

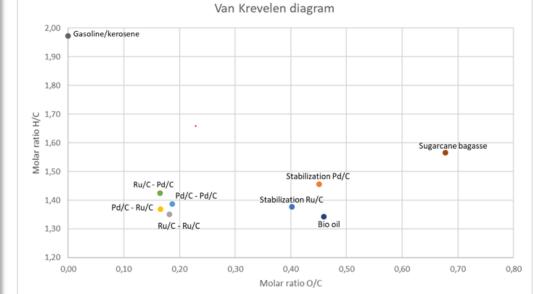
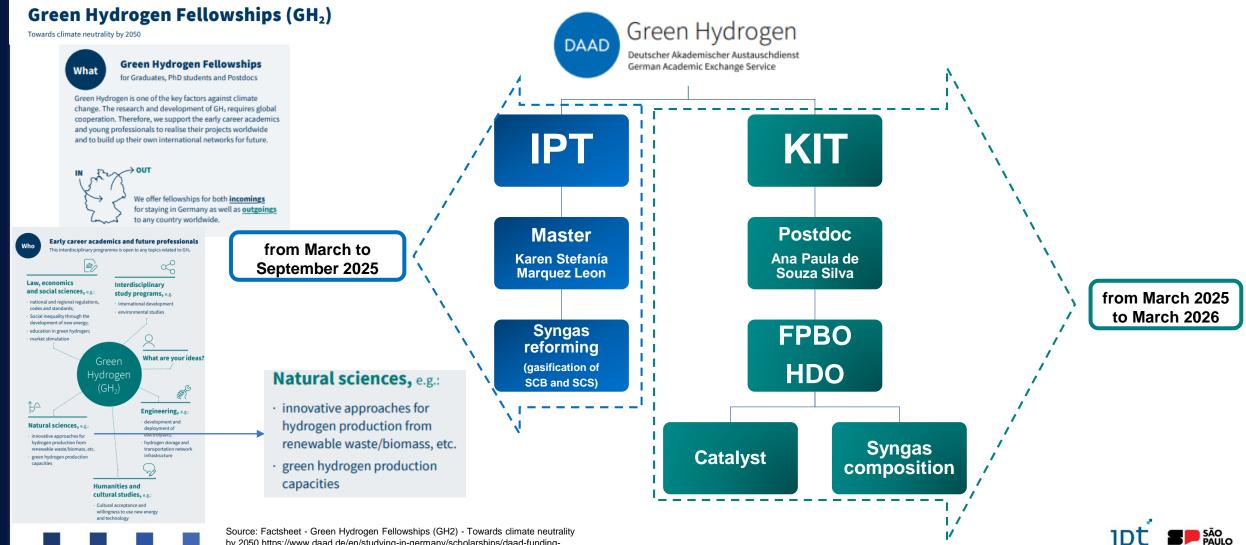


Figure 14. HDO reactor of IKFT/KIT.

Figure 15. Van Krevelen diagram with data from each stage of hydrotreatment

- The best combination of catalysts was observed for: Pd/C for FPBO stabilization and Ru/C for HDO of the stabilized oil.
- Pd/C Stabilized oil followed by HDO with Ru/C presented a significant reduction of 53.4 wt.% in oxygen and H₂ consumption of 78.4 vol.%.
- FPBO stabilization proved to be efficient for the conversion of ketones, aldehydes and furans.

SCIENTIFIC PRODUCTION AND MEDIA DISCLOSURE


Project: Hydrogen generation from sugarcane bagasse by dry syngas reforming and downstream storage in fuel precursors

DAAD NoPa 2.0 | 01/2023 to 01/2024

Scientific events

DAAD ERA GREEN H₂

by 2050 https://www.daad.de/en/studying-in-germany/scholarships/daad-fundingprogrammes/green-hydrogen/

FAPESP CCD - RENEWABLE ENERGIES AND FUELS OF THE FUTURE

FAPESP

CCD Centros de Ciência para o Desenvolvimento

CENTRO DE CIÊNCIAS PARA O 39 DESENVOLVIMENTO EM ENERGIAS RENOVÁVEIS E COMBUSTÍVEIS DO FUTURO (CCD-ERCF)

O Centro de Ciências para o Desenvolvimento em Energias Renováveis e Combustíveis do Futuro foi criado para enfrentar os desafios relacionados à descarbonização da indústria e do setor de transporte paulista de forma economicamente viável e ambientalmente adeguada.

O CCD buscará soluções para implementação do hidrogênio de baixa

intensidade de carbono com as seguintes verticais de pesquisa: Produção, Armazenamento e Transporte, Usos e Aplicações e Regulamentação, de modo a buscar o protagonismo do Estado de São Paulo no desenvolvimento de tecnologias avançadas e na promoção da indústria nacional.

O Centro articulará uma rede de parcerias formada pelo IPT, a Escola Politécnica da USP, UFSCar, UFPR, UFABC, o ISI de Eletroquímica e a Associação Brasileira de Energia Eólica (ABEEólica), para garantir o alinhamento estratégico dos temas abordados com as necessidades da indústria. Esse alinhamento permitirá o desenvolvimento da cadeia de fornecedores nacional para componentes relacionados ao uso de H2 como fonte de energia. As instituições participaram ativamente da estruturação dos temas a serem desenvolvidos no CCD-ERCF, incluindo a definição das metas e a contrapartida econômica.

Instituições parceiras

- Secretaria de Meio Ambiente, Infraestrutura e Logística de SP
- Instituto de Pesquisas Tecnológicas (IPT) .

3° EDITAL

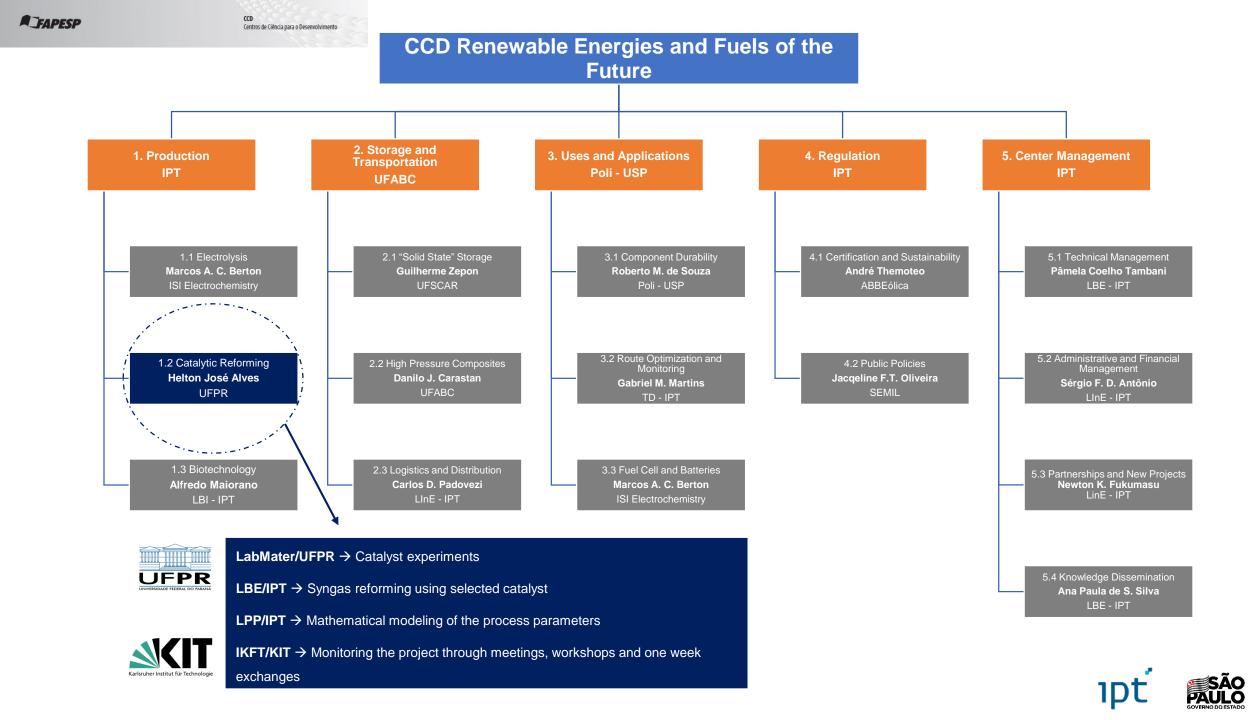
PESOUISADOR RESPONSÁVEL Adriano Marim de Oliveira

INSTITUICÃO-SEDE Instituto de Pesquisas Tecnológicas do Estado de São Paulo

Processo FAPESP 2024/01059-3

Total Financial Resources: R\$ 8.237.557,35 (1,34 million €) \rightarrow 37% for research fellowship

- **Project period: 60 months**
- Start up: 01 July 2024



Thank you!

- Vittor Rodrigues Santos Alves
- vittoralves@ipt.br

linkedin.com/school/iptsp/

instagram.com/ipt_oficial/

youtube.com/@IPTbr/

www.ipt.br

IKFT/KIT PYROLYSIS DEVELOPMENT UNIT (PDU)

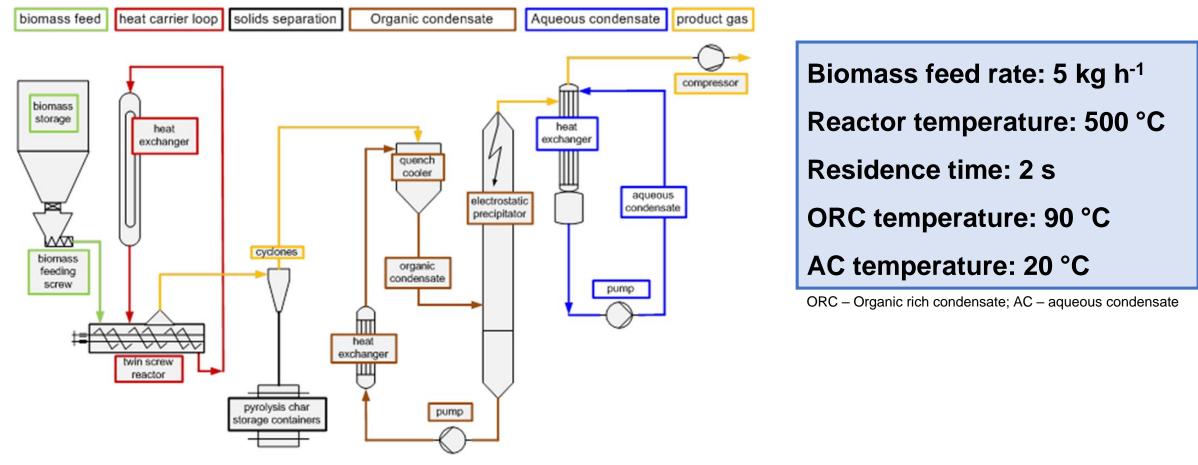


Figure 16. Flowchart of the Process Development Unit of IKFT/KIT (Copyright 2021 by KIT)

