

COMUNICAÇÃO TÉCNICA

Nº 179831

Acoustic performance of sliding façade windows and doors: impact f sealing semtems, locks, and integrated roller shutters

Henrique Lima Pires Cristina Yukari Kawakita Ikeda Eliane Hayashi Suzuki Maria Akutsu Marcelo de Mello Aquilino

> Palestra apresentada no INTERNATIONAL CONGRESS AND EXPOSITION ON NOISE CONTROL ENGINEERING, INTER NOISE, 54., 2025, São Paulo. 22 slides

A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPRODUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT
Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970
São Paulo | SP | Brasil | CEP 05508-901
Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Acoustic Performance of Sliding Façade Windows and Doors: Impact of Sealing Systems, Locks, and Integrated Roller Shutters

Henrique Lima Pires; Cristina Yukari Kawakita Ikeda; Eliane Hayashi Suzuki; Maria Akutsu; Marcelo de Mello Aquilino

Laboratory of Environmental Comfort, Energy Efficiency and Building System, Institute for Technological Research – IPT

Maria Fernanda de Oliveira Architecture and Construction Department - UNICAMP

Acknowledgements

- Thanks to the many window frame developers and manufacturers, clients of IPT's LCAP, who contributed by commissioning the tests from which the data for this research;
- No information that could identify the products or clients was disclosed in this work, ensuring the confidentiality of the data.

Motivation

- The lack of scientific exploration in the area of acoustic performance of facade frames;
- This research is the begin of my doctorate research that is to develop a method for predicting the acoustic performance of facade frames;
- For the continuation of this research, we invite partners who are interested in collaborating by providing materials.
- Contact: henriquelp@ipt.br; +55 11 97159-2857

Introduction

internoise 20
sao PAULO - BRAZIL
24 - 27 AUGUST
24 - 27 AUGUST
25

- Frames (windows and balcony doors) are the most vulnerable element of the facade in acoustic terms;
- Low mass and the presence of moving components make them more susceptible to sound transmission and leakage;
- The ABNT NBR 10821-4 (2017) standard establishes the classification of the acoustic performance of frames;

Introduction

- To improving acoustic insulation, people often think of increasing the system's mass. This is a correct but incomplete concept;
- There are other factors that can significantly influence.

- Mass of structure
- 2 Sealing (absence of gaps)
- 3 Structural decoupling (decoupled double systems)
- 4 Damping
- Geometry and thickness of structure
- 6 Internal absorption (porous materials between layers))
- 7 Critical frequency of the material

Introduction

inter.noi/e 20
Sao PAULO - BRAZIL
24 - 27 AUGUST
25

- The effect of gaps is often overlooked by developers;
- The existence of gaps and their respective sealing components, such as brushes, foams and rubber gaskets, can significantly influence acoustic performance.

Previous Research

Reference	Condition / Typology	Effect on sound insulation (Rw / loss)	
Belis & Bleecker	Low closing pressure	≈ -3 dB	
Belis & Bleecker; NBS (USA)	Damaged sealings	–2 to –8 dB	
Baring	1) No sealing (glass + louvered)	Rw ≈ 12 dB	
	2) Additional glass without sealing	Rw ≈ 14 dB (+2 dB only)	
	3) Glass with brush seals	Rw ≈ 25 dB	
Nurzyński; Utida	Air permeability	Direct correlation with sound insulation	

General remarks:

- Mass increase is largely ineffective without proper sealing.
- Gaps or sealing failures strongly compromise acoustic insulation.

Goals of This Work

 Objective: To categorize sealing components according to ABNT NBR 10821-4:2017 performance classes to assess their correlation with different performance levels.

Method

- Comparison of construction characteristics vs. Rw values
- Database: 396 laboratory tests in IPT (2017–2025)
- Conducted under ISO 10140-2
- Scope: Glazed sliding façade window frames of aluminium,
 PVC and wood.

Method

Performance Classification of ABNT NBR 10821-4:2017:

Class	Rw (dB)	Description
A+	Rw ≥ 36	Added by the authors for differentiation
Α	30 ≤ Rw < 36	The maximum (35 dB) was also added by the authors for differentiation
В	24 ≤ Rw < 30	
С	18 ≤ Rw < 24	
D	Rw < 18	

Method

Elaman4	Codo	Description
Element	Code	Description internoise
Glass Type and thickness	C &"number"	Monolithic glass's thickness in mm SAO PAULO - BRA 24 • 27 AUGU 24 • 27 AUGU
	L &"number"	Laminated glass and its thickness in mm
	I &"number"	Insulated glass and its thickness in mm
	LI &"number"	Laminated insulated glass and its thickness in mm
Sealing Elements ¹²³	Е	Brush
	E1	Brush with barrier
	E2	Brush with a double barrier.
	E3	Brush with a triple barrier.
	E4	Brush with a quadruple barrier.
	R	Elastomeric profile
	P	Plastic foam
	Q	Foam core profile with polymer coating
Lock Types - -	KN	Latch-type lock
	UM	Shell-type lock
	SN	Crescent-type lock
	TN	Standard Cremone lock
	TL	Cremone lock with lifting or pressure mechanism
	W	No lock
Shutter Condition	XB	No shutter
	AB	Activated shutter
	DB	Deactivated shutter

internoire 20
SAO PAULO - BRAZIL
24 • 27 AUGUST
25

General scenario of the acoustic performance of Brazilian windows from 2017 to the present

Sealing Between Sash Rails and Upper/Lower Tracks of the Frame

- •Classes A+, A and B: Greater presence of plastic foams, rubbers, foam core, brush+barriers and other combinations.
- For classes C and D: majority presence of common brush

Sealing Between Central Mullions of the Sashes

- •Classes A+, A and B: Greater presence of plastic foams, rubbers, foam core, brush+barriers and other combinations.
- For classes C and D: majority presence of common brush

Sealing Between Sash Mullions and Frame Mullions

- •Classes A+, A and B: Greater presence of plastic foams, rubbers, foam core, brush+barriers and other combinations.
- For classes C and D: majority presence of common brush

- Common glass and 6 to 8 mm laminated glass combined with good sealing can achieve high performance, competing with thicker glass.
- With poor sealing, thicker glass results in low acoustic performance.

Locking Mechanisms

No locking mechanisms - heavy frames due to thick glass

inter.noise

Locking Mechanisms

No locking mechanisms - heavy frames due to thick glass

Standard

Cremone

inter.noise

internoire 20 SAO PAULO - BRAZIL 24-27 AUGUST 24-27 AUGUST 25-27 AUGUST 25-27 AUGUST 26-27 AUGUS

Integrated Roller shutters

internoire 20 SAO PAULO - BRAZIL 24-27 AUGUST 24-27 AUGUST 25

Integrated Roller shutters

- Frames with shutters in class C have increases raging from 4 to 10, with an average of 7 dB
- Frames with shutters in class B have increases raging from 3 to 9, with an average of 5 dB
- Frames with shutters in class A have increases raging from 1 to 8, with an average of 4 dB
- One frames with shutters in class A+ has one increase of 4 dB

FINAL REMARKS

- Classes A+ and A: achieve better insulation with thicker laminated glass, elastomeric seals, and often cremone locks.
- Classes C and D: use thin glass (3–4 mm) and simple brush seals, resulting in low efficiency.
- 6 mm laminated glass: offers a good balance between cost and performance, being common in higher classes.
- Integrated roller shutters: help reduce sound leakage, especially in lower-performance windows.
- Recommendation for projects: consider glass, seals, locks, and shutters together.

 Attention should be paid to the manufacturing and installation processes to avoid defects
- Future research: include mullions geometry and mass, seal dimensions, closing pressure, extra seals, and frame properties.

REFERENCES

- 1. Brazilian Association of Technical Standards. *ABNT NBR 10821-4: Window frames for buildings Part 4: Acoustic performance requirements.* Rio de Janeiro: ABNT, 2017.
- 2. Blasco, M., Belis, J., De Bleecker, H. *Acoustic failure analysis of windows in buildings*. Engineering Failure Analysis, **18** (7), 1761–1774 (2011).
- 3. BARING, João Gualberto de Azevedo. *Acoustic performance of façade frames in the context of urban noise pollution control.* 1990. Thesis (PhD) University of São Paulo, São Paulo, 1990. Accessed on: Nov. 8, 2024.
- 4. Sabine, H. J., Lacher, M. B., Flynn, D. R., & Quindry, T. L. *Acoustical and thermal performance of exterior residential walls, doors and windows.* NBS Building Science Series 77, U.S. Department of Commerce / National Bureau of Standards, 170 p. (1975).
- 5. Nurzyński, J. *Influence of sealing on the acoustic performance of PVC windows*. In: Proceedings of the Second International Conference on Building Physics, pp. 595–604, 2003. Belgium.
- 6. Morais Júnior, F. U. de. Development of a systematic method for evaluating the acoustic performance of aluminum sliding windows through air permeability tests. Master's dissertation Instituto de Pesquisas Tecnológicas do Estado de São Paulo IPT, São Paulo, 2022
- 7. International Organization for Standardization. ISO 10140-2:2010 Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation. Geneva: ISO, 2010.
- 8. International Organization for Standardization. *ISO* 10140-2:2021 Acoustics Laboratory measurement of sound insulation of building elements Part 2: Measurement of airborne sound insulation. Geneva: ISO, 2021.