

COMUNICAÇÃO TÉCNICA

Nº 179944

Mobilidade urbana e a resiliência de pontes e viadutos Ciro José Ribeiro Villela Araujo

Palestra apresentada na FEIRA PULSAR EXPO IPT, 2025, São Paulo. 18 slides

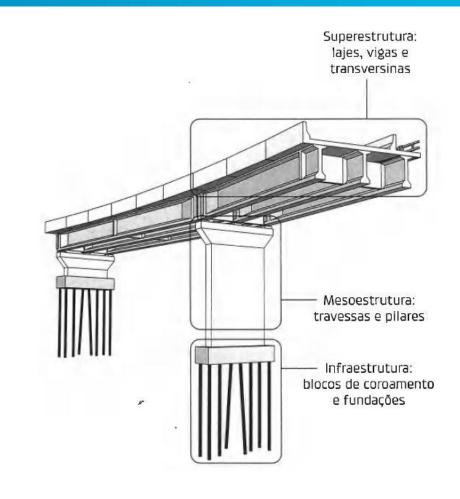
A série "Comunicação Técnica" compreende trabalhos elaborados por técnicos do IPT, apresentados em eventos, publicados em revistas especializadas ou quando seu conteúdo apresentar relevância pública. **PROIBIDO REPRODUÇÃO**

Instituto de Pesquisas Tecnológicas do Estado de São Paulo S/A - IPT
Av. Prof. Almeida Prado, 532 | Cidade Universitária ou Caixa Postal 0141 | CEP 01064-970
São Paulo | SP | Brasil | CEP 05508-901
Tel 11 3767 4374/4000 | Fax 11 3767-4099

www.ipt.br

Mobilidade Urbana e a Resiliência de Pontes e Viadutos

- 1 Inspeção de Pontes e Viadutos
- 2 Manutenção de OAE's e a Mobilidade Urbana
- 3 Recuperação e Reforço de Pontes e Viadutos



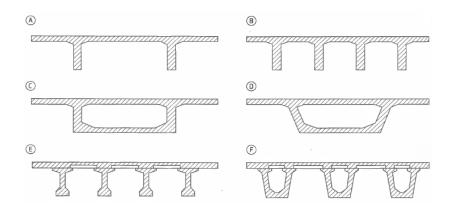
1 — Inspeção de Pontes e Viadutos Eng. Civil, Mestre Ciro José R. V. Araujo

Introdução

- Resiliência das estruturas: capacidade de uma construção em resistir, adaptar-se e se recuperar de eventos adversos, como desastres naturais, mudanças climáticas e falhas, mantendo sua segurança e funções essenciais.
- Norma de Inspeção em Pontes e Viadutos NBR 9452:2023;
- Existem 4 estruturas fundamentais dessas OAEs
 - <u>Superestrutura</u>: lajes, vigas longarinas, treliças, vigas caixão, arcos; vigas transversinas, articulações (dentes tipo Gerber, Freyssinet e outros), estais, etc.;
 - <u>Mesoestrutura</u>: vigas travessas, pilares, aparelhos de apoio, vigas de travamento de pilares;
 - <u>Infraestrutura</u>: sapatas, vigas de travamento de blocos de fundação, viga alavanca, estacas, blocos sobre estacas, blocos de transição, tubulões;
 - <u>Elementos dos encontros</u>: laje de aproximação, cortinas, muros de ala e encontro.

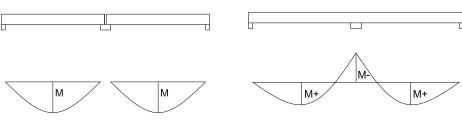
Fonte: VALERIANO, 2021.

Tipologias


Rodoviária

Ferroviária

Passarela


Ponte em arco

Ponte Pênsil

Tipologia da seção transversal

Sistema estrutural isostático

Sistema estrutural hiperestático

Atual norma brasileira de inspeções em OAE`s

NORMA BRASILEIRA

ABNT NBR 9452

Quinta edição 20.12.2023

Inspeção de pontes, viadutos e passarelas — Procedimento

Inspection of bridges, viaducts and footbridges - Procedure

ICS 93,040

ISBN 978-85-07-09952-

Número de referência ABNT NBR 9452:202:

@ ABNT 2023

- Estabelece os requisitos para inspeção em pontes, viadutos e passarelas de concreto, aço e mistas de aço e concreto;
- Tipos de Inspeções: Cadastrais, Rotineiras, Especiais e Extraordinárias;
- Classificação das OAE`s
 - segundo parâmetros estruturais, funcionais e de durabilidade com notas de 0 a 5;
 - relevância na anomalia no elemento estrutural (principal, secundário e complementar);
- Roteiro básico e modelos de fichas de inspeções: Cadastrais, Rotineiras, Especiais;
- Roteiro para inspeção subaquática;
- Orientações para identificação de danos e manifestações patológicas em pontes, viadutos e passarelas de aço;
- Tecnologia BIM aplicada às inspeções de OAE.

Tipos de inspeções

INSPEÇÃO CADASTRAL

- Primeira realizada na obra
 - Imediatamente após sua conclusão
 - quando se integra a um sistema viário existente
 - quando houver alterações na configuração da OAE
- O que deve constar:
 - Roteiro básico e ficha conforme o Anexo A da NBR 9452;

INSPEÇÃO ROTINEIRA

- Inspeção de acompanhamento periódico, não superior a 1 ano em relação a inspeção anterior, para acompanhar o estado geral da OAE.
 - exame visual dos elementos e componentes da estrutura, com ou sem a utilização de equipamentos e/ou recursos especiais para análise ou acesso, podendo ser realizadas à distância;
 - deve ser verificada a evolução de anomalias já observadas em inspeções anteriores, bem como novas ocorrências.
 - No caso de pontes ferroviárias com notas de classificação 4 ou 5, em malha ferroviária operacional e concessionada, com sistema de gestão e manutenção, pode-se estender até 2 anos.
- O que deve constar:
 - Roteiro básico e ficha conforme o Anexo B da NBR 9452;

Tipos de inspeções

INSPEÇÃO ESPECIAL

- Deve ser feita a cada 5 anos
 - para obras com notas 4 e 5, pode-se postergar para 8 anos, caso seja possível a inspeção de todos seus elementos na inspeção rotineira;
 - antecipada quando:
 - a nota de classificação for 1 e 2, referente aos parâmetros estruturais e de durabilidade;
 - Feitas obras de adequações de grande porte
 - são necessários equipamentos especiais para acesso à todos seus elementos
- O que deve constar:
 - Roteiro básico e ficha conforme o Anexo D da NBR 9452;
 - <u>Análises</u>, <u>ensaios</u>, <u>monitoramentos</u>, inspeção subaquática, etc.

INSPEÇÃO EXTRAORDINÁRIA

- Inspeção não programada.
 - pode ou não ser gerada por inspeção anterior;
 - relacionada à acidentes
 - Impacto de veículos, trem ou embarcação, inundação, vendaval, incêndios, sismos, etc.

Notas de classificação geral das OAE`s

Classificação nota	Condição	Caracterização estrutural	Caracterização funcional	Caracterização de durabilidade
5	Excelente	A estrutura se encontra em condições satisfatórias, apresentando defeitos irrelevantes e isolados	A OAE apresenta segurança e conforto aos usuários	A OAE se encontra em condições satisfatórias, apresentando defeitos irrelevantes e isolados
4	Boa	A estrutura apresenta danos de baixa gravidade, localizados e em pequenas áreas, sem comprometer a segurança estrutural	A OAE apresenta pequenos danos que não chegam a causar desconforto ou insegurança ao usuário	A OAE apresenta pequenas e poucas anomalias, que não comprometem sua vida útil, em região de baixa agressividade ambiental
3	Regular	Há danos que podem vir a gerar alguma deficiência estrutural, mas não há sinais de comprometimento da estabilidade da obra. Recomenda-se acompanhamento dos problemas	A OAE apresenta desconforto ao usuário, com defeitos que requerem ações	A OAE apresenta anomalias de moderada gravidade, que comprometem sua vida útil, em região de moderada a alta agressividade ambiental A OAE apresenta de moderadas a muitas anomalias, que comprometem sua vida útil, em região de baixa agressividade ambiental

2	Ruim	Há danos comprometendo a segurança estrutural da OAE sem aparente risco iminente de colapso. Sua evolução pode levar ao colapso estrutural. A OAE necessita de intervenções significativas	A OAE possui funcionalidade visivelmente comprometida, com riscos de segurança ao usuário	A OAE apresenta de moderadas a muitas anomalias, que comprometem sua vida útil, em região de alta agressividade ambiental A OAE apresenta muitas anomalias, que comprometem sua vida útil, em região de baixa agressividade ambiental
1	Crítica	Há danos gerando grave insuficiência estrutural na OAE. Há elementos estruturais em estado crítico, com risco tangível de colapso estrutural localizado. A OAE necessita de intervenção imediata, podendo ser necessária restrição de carga, interdição parcial, escoramento provisório, instrumentação, associadas ou não	A OAE apresenta condições funcionais limitadas de utilização em regiões localizadas	A OAE se encontra em elevado grau de deterioração em regiões localizadas, apontando problema já de risco estrutural e/ou funcional, requerendo intervenção imediata, podendo ser necessárias restrição de carga e interdição parcial ao tráfego
0	Emergencial	Há elementos estruturais principais colapsados, evoluindo para instabilidade da estrutura. É necessária a interdição total, até que haja avaliação e reclassificação por consultoria especializada ou intervenção	A OAE não apresenta condições funcionais de utilização. A OAE deve ser interditada	A OAE se encontra em elevado grau de deterioração, gerando grave insuficiência estrutural e/ou funcional, requerendo intervenção emergencial e interdição total

Notas de classificação individual, exemplos:

Tabela E.2 – Pontes, viadutos e passarelas em concreto – Nota de classificação da OAE segundo parâmetros estruturais para elemento principal, secundário e complementar previstos na Seção 5 (continua)

		Nota de classificação			
segundo parametros estruturais		Elemento	Elemento onde foi constatada a anomalia		
		Principal	Secundário	Complementar	
	Fissuração superficial de retração, hidráulica ou térmica	5	5	5	
Figure 2	Fissuras em elementos de concreto armado com abertura dentro dos limites previstos conforme a ABNT NBR 6118	4	5	5	
Fissuração	Fissuras em elementos de concreto armado com abertura superior aos limites previstos conforme a ABNT NBR 6118	2	3	4	
	Fissuras em elementos de concreto protendido	1	2	-	
Flecha	Flechas não congênitas e acima dos limites conforme a ABNT NBR 6118	2	3	-	

Tabela E.3 – Pontes, viadutos e passarelas em concreto – Nota de classificação da OAE segundo parâmetros estruturais previstos na Seção 5 (continua)

	Aparelhos de apoio de neoprene com pequenos rasgos na camada superficial, sem exposição das chapas de fretagem	5
	Aparelhos de apoio metálicos com corrosão superficial sem comprometimento da sua capacidade portante	5
Aparelhos de apoio	Aparelhos de apoio comprometidos por ações mecânicas, ações de incêndio e intempéries, gerando vínculos imprevistos com cunhas de ruptura e recalques diferenciais com fissuras	2
	Aparelhos de apoio danificados totalmente rompidos, dando origem a esforços horizontais e/ou travamento de rotações, indesejáveis no esquema estrutural original	1
	Ausência de aparelho de apoio	0
	Juntas de dilatação parcialmente obstruídas sem causar restrições à movimentação dos tabuleiros	5
	Juntas de dilatação obstruídas, causando restrições à movimentação dos tabuleiros	4
Juntas	Juntas de dilatação obstruídas, com contribuição para o quadro patológico com formação de fissuras em vigas longarinas e lajes	3
	Juntas de dilatação obstruídas, causando graves danos à superestrutura (esmagamento do concreto de vigas e lajes, formação de quadro de fissuração e esforços não previstos na meso e infraestrutura)	2

Equipamentos Especiais para aproximação e inspeção

Caminhão com braço articulado e cesto – Necessidade de interdição de faixas de rolamento

Passarela metálica instalada na região próximo as juntas de dilatação e aparelhos de apoio da OAE

Fonte: https://www.dronevisual.com

Uso de scanner para levantamentos de dados geométricos de OAE's

Alçapão na laje inferior da superestrutura

Interior da seção celular

Uso de EPI no interior da seção celular

Tecnologias tradicionais: ensaios e monitoramento

Extensômetro:

Aparelho para medida de deformações.

Clinômetro manual: Aparelho para medidas de rotações, in loco.

Acelerômetro digital: Aparelho para medidas de aceleração em tempo real.

Paquímetro

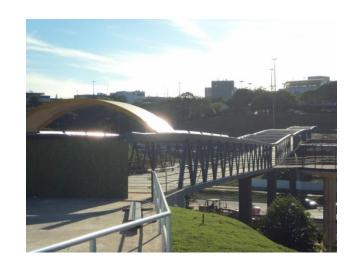
Aparelho para medida de aberturas de juntas.

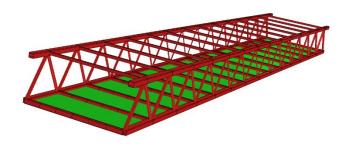
Anemômetro:

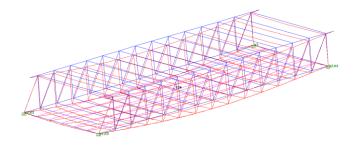
Aparelho para medida da velocidade do vento.

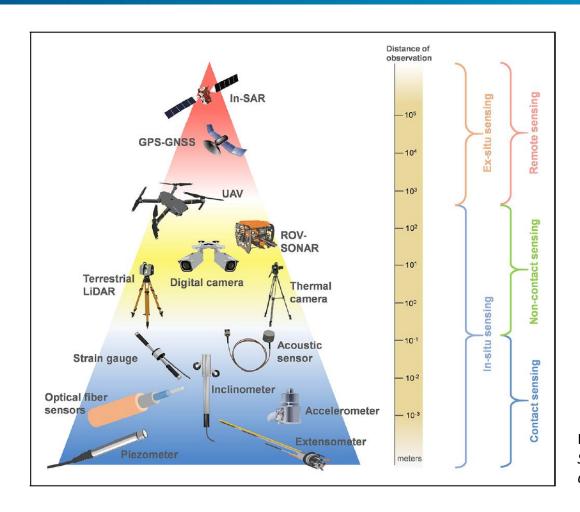
Relógio comparador Aparelho para medida de aberturas de fissuras e juntas.

Biruta:
Aparelho para medida
da direção do vento.


Defletômetro: Aparelho para medidas de deslocamentos.


Provas de Carga com tecnologias tradicionais e análises estruturais





Técnicas de monitoramento

- DETECÇÃO REMOTA

- DETECÇÃO SEM CONTATO

- DETECÇÃO COM CONTATO


Fonte: NEGI, Prateek; KROMANIS, Rolands; DORÉE, André G.; WIJNBERG, Kathelijne M. Structural health monitoring of inland navigation structures and ports: a review on developments and challenges. Structural Health Monitoring, v. 23, n. 1, 2024.

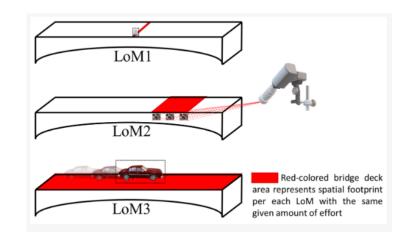
Novas tecnologias: Utilização de câmeras especiais para monitoramento de deslocamentos

Fonte: https://rditechnologies.com/

PONTES E INFRAESTRUTURA: Motion Amplification® para ver as vibrações estruturais causadas por impactos.

RDI Technologies: Tennessee/USA

Novas tecnologias no Monitoramento Estrutural de Pontes

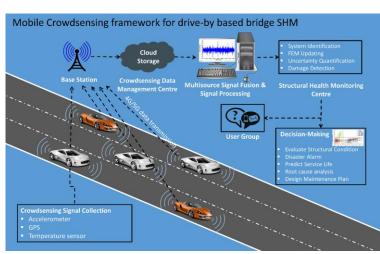


Nível de Mobilidade (LoM):

LoM1, detecção por meio de posicionamento de sensor;

LoM2, detecção com base no monitoramento remoto e sem contato;

LoM3, detecção drive-by por meio de monitoramento veicular indireto.

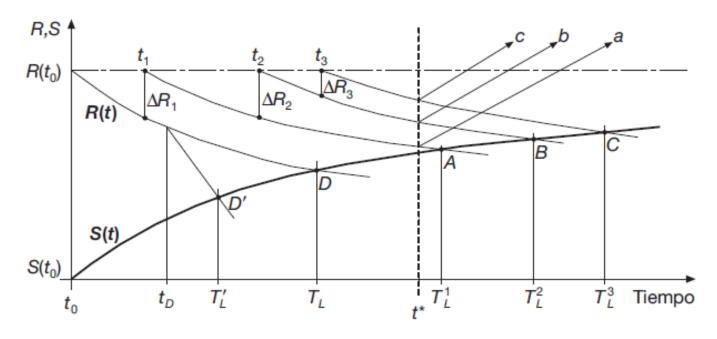


Fonte: Ozer, E.; Kromanis, R. Smartphone Prospects in Bridge Structural Health Monitoring, a Literature Review. Sensors 2024, 24, 3287.

Uso de técnicas de Machine Learning para análises dos dados e emissão de alertas.

Uso de sensores IoT coletivos para monitoramento de pontes com técnicas drive-by

- Comportamento estrutural;
- Alarme de desastres;
- Previsão de vida útil;
- Análises das causas; e
- Plano de manutenção.


Fonte: Zhen Peng, Jun Li, Hong Hao, Development and experimental verification of an IoT sensing system for drive-by bridge health monitoring, Engineering Structures, Volume 293, 2023, 116705, ISSN 0141-0296.

Manutenção e Vida Útil

Fonte: ESPAÑA. Ministerio de Fomento. **EHE-08**: Instrucción de Hormigon Estructural. 5. ed. Madrid: Centro de Publicações, 2011.

Considerações Finais

- Importância das inspeções rotineiras e especiais
 - Aspectos estruturais, funcionais e de durabilidade;
- Detecção em tempo hábil das anomalias;
- A importância do acesso e visualização das anomalias;
- Novas tecnologias de aquisição de dados das OAEs para monitoramento da saúde estrutural; e
- A ausência de um plano de inspeção e manutenção acarreta na degradação das estruturas, aumento dos custos para reparos, riscos de acidentes e impacto na mobilidade urbana.

Obrigado

Ciro José Ribeiro Villela Araujo ciroaraujo@ipt.br (11) 3767-4166

